Skip to content

Post-award publications and conference proceedings

1.
Maniscalco, J. & Liepe, M. A Computational Method for More Accurate Measurements of the Surface Resistance in SRF Cavities. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-wepmf042
2.
Zholents, A. et al. A Conceptual Design of a Compact Wakefield Accelerator for a High Repetition Rate Multi User X-ray Free-Electron Laser Facility. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-tupmf010
3.
N. Sataraman, T.A. Arias. A First-Principles Study of the A-15 Phase in the Nb-Sn System. Physical Review B (2018).
4.
Musumeci, P. et al. Advances in bright electron sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018). doi:10.1016/j.nima.2018.03.019
5.
Maniscalco, J., Furuta, F., Hall, D., Koufalis, P. & Liepe, M. Analysis of Mean Free Path and Field Dependent Surface Resistance. WEPVA145 (2017). doi:10.18429/JACoW-IPAC2017-WEPVA145
6.
Koh, D. H. & Baturin, S. S. Analytical model of a 3D beam dynamics in a wakefield device. arXiv:1802.06729 [physics] (2018).
7.
Galdi, A. et al. Barium Tin Oxide Ordered Photocathodes: First Measurements and Future Perspectives. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-tupml027
8.
Gupta, L. et al. Beam-Based Sextupolar Nonlinearity Mapping in CESR. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-thpak137
9.
Hall, D. et al. Cavity Quench Studies in Nb3Sn Using Temperature Mapping and Surface Analysis of Cavity Cut-outs. Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China (2018). doi:10.18429/jacow-srf2017-thpb041
10.
Ji, Y. et al. Chemical Vapor Deposition Growth of Large Single-Crystal Mono-, Bi-, Tri-Layer Hexagonal Boron Nitride and Their Interlayer Stacking. ACS Nano 11, 1205712066 (2017).
11.
Paul, J. T. et al. Computational methods for 2D materials: discovery, property characterization, and application design. Journal of Physics: Condensed Matter 29, (2017).
12.
Paul, J. et al. Computational Screening for Low Emittance Photocathodes. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-thpml053
13.
Maniscalco, J. et al. Cornell Sample Host Cavity: Recent Results. MOPVA123 (2017). doi:10.18429/JACoW-IPAC2017-MOPVA123
14.
Bernstein, A. & Rand, R. Coupled Parametrically Driven Modes in Synchrotron Dynamics. in Nonlinear Dynamics, Volume 1 107112 (Springer, Cham, 2016). doi:10.1007/978-3-319-15221-9_8
15.
Keckert, S. et al. Critical Fields of Nb$_3$Sn Prepared for Superconducting Cavities. (2018).
16.
Baturin, S. S., Zinovev, A. V. & Baryshev, S. V. Current Saturation in Nonmetallic Field Emitters. arXiv:1710.03692 [cond-mat, physics:physics] (2017).
17.
Bernstein, A. & Rand, R. Delay-coupled Mathieu Equations in Synchrotron Dynamics. Journal of Applied Nonlinear Dynamics 5, 337348 (2016).
18.
Gupta, L., Nagaitsev, S., Baturin, S. S. & Kim, Y.-K. Design of a One-Dimensional Sextupole Using Semi-Analytic Methods. THPAF070 (2018).
19.
Maniscalco, J., Liepe, M. & Porter, R. Design Updates on Cavity to Measure Suppression of Microwave Surface Resistance by DC Magnetic Fields. Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China (2018). doi:10.18429/jacow-srf2017-thpb005
20.
Porter, R. D. et al. Effectiveness of Chemical Treatments for Reducing the Surface Roughness of Nb3Sn. 4 (2017).
21.
Porter, R., Furuta, F., Hall, D., Liepe, M. & Maniscalco, J. Effects of Chemical Treatments on the Surface Roughess and Surface Magnetic Field Ehancement of Niobium-3 Tin Films for Superconducting Radio-Frequency Cavities. Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China (2018). doi:10.18429/jacow-srf2017-thpb043
22.
Baturin, S. S. & Baryshev, S. V. Electron emission projection imager. Review of Scientific Instruments 88, 033701 (2017).
23.
Giner Navarro, J. et al. Electron Microscopy Inspired Setup for Single-Shot 4-D Trace Space Reconstruction of Bright Electron Beams. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-thpml106
24.
Koufalis, P., Liepe, M., Maniscalco, J. & Oseroff, T. Experimental Results on the Field and Frequency Dependence of the Surface Resistance of Niobium Cavities. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-wepmf039
25.
Chubenko, O. et al. Field emission microscopy of ultra-nano-crystalline diamond films. in 4647 (2017). doi:10.1109/IVNC.2017.8051543
26.
Hall, D., Liarte, D., Liepe, M., Porter, R. & Sethna, J. Field-dependence of the Sensitivity to Trapped Flux in Nb3Sn. Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China (2018). doi:10.18429/jacow-srf2017-thpb042
27.
Raju, A., Choudhury, S., Rubin, D. L., Wilkinson, A. & Sethna, J. P. Finding stability domains and escape rates in kicked Hamiltonians. arXiv:1707.09336 [cond-mat, physics:physics] (2017).
28.
Hall, D., Kaufman, J., Liepe, M., Porter, R. & Sears, J. First Results From New Single-Cell Nb3Sn Cavities Coated at Cornell University. MOOCA2 (2017). doi:10.18429/JACoW-IPAC2017-MOOCA2
29.
Ge, M. et al. Frequency Tuner Development and Testing at Cornell for the RAON Half-wave-resonator. Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China (2018). doi:10.18429/jacow-srf2017-mopb087
30.
Bell, N. & Phillips, L. Generation of Flat Ultra-Low Emittance Beams. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-thpak072
31.
Liarte, D. B., Transtrum, M. K. & Sethna, J. P. Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors. Phys. Rev. B 94, 144504 (2016).
32.
Cahill, A. D., Rosenzweig, J. B., Dolgashev, V. A., Tantawi, S. G. & Weathersby, S. High gradient experiments with $X$-band cryogenic copper accelerating cavities. Phys. Rev. Accel. Beams 21, 102002 (2018).
33.
Hall, D. et al. High Performance Nb3Sn Cavities. Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China (2018). doi:10.18429/jacow-srf2017-wexa01
34.
Oseroff, T., Hall, D., Liepe, M. & Maniscalco, J. High-frequency SRF Cavities. Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China (2018). doi:10.18429/jacow-srf2017-tupb009
35.
Savitzky, B. H. et al. Image registration of low signal-to-noise cryo-STEM data. Ultramicroscopy 191, 5665 (2018).
36.
Hall, D., Liarte, D., Liepe, M. & Sethna, J. Impact of Trapped Magnetic Flux and Thermal Gradients on the Performance of Nb3Sn Cavities. MOPVA118 (2017). doi:10.18429/JACoW-IPAC2017-MOPVA118
37.
Chubenko, O., Baturin, S. S., Kovi, K. K., Sumant, A. V. & Baryshev, S. V. Locally Resolved Electron Emission Area and Unified View of Field Emission from Ultrananocrystalline Diamond Films. ACS Appl Mater Interfaces 9, 3322933237 (2017).
38.
Chubenko, O., Afanasev, A., Baturin, S. S. & Baryshev, S. V. Locally resolved field emission area and its effect on resulting j-E characteristics: Case study for planar thin film ultrananocrystalline diamond field emitters. in 2017 30th International Vacuum Nanoelectronics Conference (IVNC) 284285 (2017). doi:10.1109/IVNC.2017.8051647
39.
Maniscalco, J., Koufalis, P. & Liepe, M. Modeling of the Frequency and Field Dependence of the Surface Resistance of Impurity-Doped Niobium. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-wepmf046
40.
Dimitrov, D. A. et al. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes. Journal of Applied Physics 122, 165303 (2017).
41.
Gupta, P., Cultrera, L. & Bazarov, I. Monte Carlo simulations of electron photoemission from cesium antimonide. Journal of Applied Physics 121, 215702 (2017).
42.
Bae, J. K. et al. Multi-photon Photoemission and Ultrafast Electron Heating in Cu Photocathodes at Threshold. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-tupml026
43.
Rosenzweig, J. B. et al. Next Generation High Brightness Electron Beams From Ultra-High Field Cryogenic Radiofrequency Photocathode Sources. arXiv:1603.01657 [physics] (2016).
44.
Grassellino, A. et al. Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures. Supercond. Sci. Technol. 26, 102001 (2013).
45.
Li, W., Bazarov, I., Gulliford, C. & Maxson, J. Novel Photocathode Geometry Optimization: Field Enhancing Photoemission Tips. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-tupml029
46.
Cahill, A., Fukasawa, A., Limborg, C., Qin, W. & Rosenzweig, J. Optimization of Beam Dynamics for an S-Band Ultra-High Gradient Photoinjector. TUPAB129 (2017). doi:10.18429/JACoW-IPAC2017-TUPAB129
47.
Oseroff, T. et al. Performance of Samples With Novel SRF Materials and Growth Techniques. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-wepmf047
48.
Ge, M. et al. Performance of the Prototype SRF Half-Wave-Resonators Tested at Cornell for the RAON Project. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-wepmf045
49.
Trenikhina, Y. et al. Performance-defining properties of Nb 3 Sn coating in SRF cavities. Supercond. Sci. Technol. 31, 015004 (2018).
50.
Cultrera, L. et al. Photocathodes R&D for High Brightness and Highly Polarized Electron Beams at Cornell University. 4 (2018).
51.
Karkare, S. et al. Physical and Chemical Roughness of Alkali-Animonide Cathodes. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-thpmf080
52.
Physical Review Applied - Accepted Paper: <article-title>Vortex dynamics and losses due to pinning: Dissipation from trapped magnetic flux in resonant superconducting radio-frequency cavities</article-title>. Available at: https://journals.aps.org/prapplied/accepted/af07bA32I391e00961cf037184b76904239cc93a9. (Accessed: 15th November 2018)
53.
Posen, S., Liepe, M. & Hall, D. L. Proof-of-principle demonstration of Nb3Sn superconducting radiofrequency cavities for high Q0 applications. Appl. Phys. Lett. 106, 082601 (2015).
54.
Hall, D. et al. Quench Studies in Single-Cell Nb3Sn Cavities Coated Using Vapour Diffusion. MOPVA116 (2017). doi:10.18429/JACoW-IPAC2017-MOPVA116
55.
Furuta, F. et al. RF Test Result of a BNL N-Doped 500 MHz B-Cell Cavity at Cornell. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-wepmf036
56.
Porter, R., Liepe, M., Maniscalco, J. & Veshcherevich, V. Sample Host Cavity Design for Measuring Flux Entry and Quench. MOPVA126 (2017). doi:10.18429/JACoW-IPAC2017-MOPVA126
57.
xu, C., E. Reece, C. & J. Kelley, M. Simulation of nonlinear superconducting rf losses derived from characteristic topography of etched and electropolished niobium surfaces. Physical Review Accelerators and Beams 19, (2016).
58.
Ding, J., Hall, D. & Liepe, M. Simulations of RF Field-induced Thermal Feedback in Niobium and Nb3Sn Cavities. THPB079 (2018). doi:10.18429/JACoW-SRF2017-THPB079
59.
Marx, D. et al. Single-shot reconstruction of core 4D phase space of high-brightness electron beams using metal grids. Phys. Rev. Accel. Beams 21, 102802 (2018).
60.
Liarte, D. et al. SRF Theory Developments from the Center for Bright Beams. Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China (2018). doi:10.18429/jacow-srf2017-thpb040
61.
Baturin, S. S. & Zholents, A. Stability condition for the drive bunch in a collinear wakefield accelerator. Phys. Rev. Accel. Beams 21, 031301 (2018).
62.
Han, Y. et al. Strain Mapping of Two-Dimensional Heterostructures with Subpicometer Precision. Nano Lett. 18, 37463751 (2018).
63.
Hall, D. et al. Surface Analysis of Features Seen on Nb3Sn Sample Coupons Grown by Vapour Diffusion. MOPVA119 (2017). doi:10.18429/JACoW-IPAC2017-MOPVA119
64.
Ding, Z. et al. Temperature-dependent quantum efficiency degradation of K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method. Phys. Rev. Accel. Beams 20, 113401 (2017).
65.
Maniscalco, J. T., Gonnella, D. & Liepe, M. The importance of the electron mean free path for superconducting radio-frequency cavities. Journal of Applied Physics 121, 043910 (2017).
66.
Nangoi, J. K., Arias, T., Karkare, S., Padmore, H. & Schroeder, A. The Role of Electron-Phonon Scattering in Transverse Momentum Conservation in PbTe(111) Photocathodes. in 14141416 (JACOW Publishing, Geneva, Switzerland, 2018). doi:10.18429/JACoW-IPAC2018-TUPMF065
67.
Liarte, D. B. et al. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: Stability theory, disorder, and laminates. Superconductor Science and Technology 30, 033002 (2017).
68.
Ashton, M., Paul, J., Sinnott, S. B. & Hennig, R. G. Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials. Phys. Rev. Lett. 118, 106101 (2017).
69.
Cahill, A., Dolgashev, V., Rosenzweig, J., Tantawi, S. & Weathersby, S. Ultra High Gradient Breakdown Rates in X-Band Cryogenic Normal Conducting Rf Accelerating Cavities. THPIK125 (2017). doi:10.18429/JACoW-IPAC2017-THPIK125
70.
Rosenzweig, J. B. et al. Ultra-high brightness electron beams from very-high field cryogenic radiofrequency photocathode sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment In press, (2018).
71.
Pierce, C. et al. Understanding and Compensating Emittance Diluting Effects in Highly Optimized Ultrafast Electron Diffraction Beamlines. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-thpaf024
72.
Porter, R. et al. Update on Nb3Sn Progress at Cornell University. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-wepmf050
73.
Porter, R., Liepe, M., Maniscalco, J. & Strauss, R. Update on Sample Host Cavity Design Work for Measuring Flux Entry and Quench Field. Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China (2018). doi:10.18429/jacow-srf2017-thpb044
74.
Maniscalco, J. & Liepe, M. Updates on the DC Field Dependence Cavity. Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada (2018). doi:10.18429/jacow-ipac2018-wepmf044
75.
Baturin, S. S. & Zholents, A. Upper limit for the accelerating gradient in the collinear wakefield accelerator as a function of the transformer ratio. Phys. Rev. Accel. Beams 20, 061302 (2017).
76.
Bergan, W. F. et al. Using Sloppy Models for Constrained Emittance Minimization at the Cornell Electron Storage Ring (CESR). arXiv:1705.07966 [physics] (2017).
77.
Baturin, S., Zinovev, A. & Baryshev, S. Vacuum Effect on Field Emission I-V curves. in (2017). doi:10.1109/IVNC.2017.8051638
78.
Liarte, D. B. et al. Vortex dynamics and losses due to pinning: Dissipation from trapped magnetic flux in resonant superconducting radio-frequency cavities. arXiv:1808.01293 [cond-mat, physics:physics] (2018).


Pre-award publications

1.
Bernstein, A. & Rand, R. in Nonlinear Dynamics (ed. Kerschen, G.) 1, (Springer, 2016).

2.
Bernstein, A. & Rand, R. Delay-coupled Mathieu Equations in Synchrotron Dynamics. Journal of Applied Nonlinear Dynamics 5, 337–348 (2016).