The advanced methods and surfaces needed for next-generation SRF cavities that enable game-changing reduction of cooling power, higher temperature operation, and higher accelerating fields for lower cryogenic system costs, energy sustainability, and simpler refrigeration.

TARGET DATES

<table>
<thead>
<tr>
<th>OBJECTIVES</th>
<th>DELIVERABLES</th>
<th>APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced SRF materials growth: Develop improved growth methods and understand the impact of realistic (non-ideal) surfaces on performance</td>
<td>New and improved growth methods and alternative materials for increased cavity efficiency and operating temperature</td>
<td></td>
</tr>
<tr>
<td>Multi-layers and inhomogeneous layers: Increasing RF performance via surfaces by design</td>
<td>Optimized inhomogeneous surface layers for increased cavity efficiency and increased accelerating fields</td>
<td></td>
</tr>
<tr>
<td>Higher efficiency and higher fields: Demonstrate higher RF performance in proof-of-principle SRF cavities and study RF superconductivity under extreme conditions</td>
<td>Surfaces from non-Nb at 20 MV/m with cooling power <1.5 kW/(active meter), corresponding to a 10x reduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surfaces capable of sustaining higher accelerating field with ultra-high efficiencies, and surfaces approaching 400 mT.</td>
<td></td>
</tr>
</tbody>
</table>