Skip to main content

The Center for Bright Beams, A National Science Foundation Science and Technology Center

Publications

Publications by Year


2024

[1]
X. Guo, D. Chaudhuri, N. Bielinski, J. Chen, S. Kim, T. C. Chiang, F. Mahmood, J. A. N. T. Soares, S. Karkare, and P. Abbamonte, “Characterization of a LaB6 tip as a thermionically enhanced photoemitter,” Applied Physics Letters, vol. 124, no. 1, p. 014103, Jan. 2024, doi: 10.1063/5.0179354. Available: https://doi.org/10.1063/5.0179354
[2]
A. J. Dick, M. Borland, J. Jarvis, V. Lebedev, P. Piot, A. Romanov, and M. Wallbank, “Numerical modeling of a proof-of-principle experiment on optical stochastic cooling at an electron storage ring,” Phys. Rev. Accel. Beams, vol. 27, no. 1, p. 012801, Jan. 2024, doi: 10.1103/PhysRevAccelBeams.27.012801. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.27.012801
[3]
J. B. Gibson, A. C. Hire, P. M. Dee, O. Barrera, B. Geisler, P. J. Hirschfeld, and R. G. Hennig, “Accelerating superconductor discovery through tempered deep learning of the electron-phonon spectral function.” arXiv, Jan. 29, 2024. doi: 10.48550/arXiv.2401.16611. Available: http://arxiv.org/abs/2401.16611
[4]
S. Kim, J. P. Gonzalez-Aguilera, P. Piot, G. Chen, S. Doran, Y.-K. Kim, W. Liu, C. Whiteford, E. Wisniewski, A. Edelen, R. Roussel, and J. Power, “Four-Dimensional Phase-Space Reconstruction of Flat and Magnetized Beams Using Neural Networks and Differentiable Simulations.” arXiv, Feb. 28, 2024. doi: 10.48550/arXiv.2402.18244. Available: http://arxiv.org/abs/2402.18244
[5]
G. E. Lawler, F. Bosco, M. Carillo, A. Fukasawa, Z. Li, N. Majernik, Y. Sakai, S. Tantawi, O. Williams, M. Yadav, and J. Rosenzweig, “Improving Cathode Testing with a High-Gradient Cryogenic Normal Conducting RF Photogun,” Instruments, vol. 8, no. 1, Art. no. 1, Mar. 2024, doi: 10.3390/instruments8010014. Available: https://www.mdpi.com/2410-390X/8/1/14
[6]
J. Mann and J. Rosenzweig, “A Thermodynamic Comparison of Nanotip and Nanoblade Geometries for Ultrafast Laser Field Emission via the Finite Element Method,” Physics, vol. 6, no. 1, Art. no. 1, Mar. 2024, doi: 10.3390/physics6010001. Available: https://www.mdpi.com/2624-8174/6/1/1
[7]
J. B. Rosenzweig, G. Andonian, R. Agustsson, P. M. Anisimov, A. Araujo, F. Bosco, M. Carillo, E. Chiadroni, L. Giannessi, Z. Huang, A. Fukasawa, D. Kim, S. Kutsaev, G. Lawler, Z. Li, N. Majernik, P. Manwani, J. Maxson, J. Miao, M. Migliorati, A. Mostacci, P. Musumeci, A. Murokh, E. Nanni, S. O’Tool, L. Palumbo, R. Robles, Y. Sakai, E. I. Simakov, M. Singleton, B. Spataro, J. Tang, S. Tantawi, O. Williams, H. Xu, and M. Yadav, “A High-Flux Compact X-ray Free-Electron Laser for Next-Generation Chip Metrology Needs,” Instruments, vol. 8, no. 1, Art. no. 1, Mar. 2024, doi: 10.3390/instruments8010019. Available: https://www.mdpi.com/2410-390X/8/1/19
[8]
P. M. Dee, J. S. Kim, A. C. Hire, J. Lim, L. Fanfarillo, S. Sinha, J. J. Hamlin, R. G. Hennig, P. J. Hirschfeld, and G. R. Stewart, “Diboride compounds doped with transition metals: A route to superconductivity through structure stabilization as well as defects,” Phys. Rev. B, vol. 109, no. 10, p. 104520, Mar. 2024, doi: 10.1103/PhysRevB.109.104520. Available: https://link.aps.org/doi/10.1103/PhysRevB.109.104520
[9]
A. Kachwala, O. Chubenko, D. Kim, E. I. Simakov, and S. Karkare, “Ultrafast laser triggered electron emission from ultrananocrystalline diamond pyramid tip cathode,” Journal of Applied Physics, vol. 135, no. 12, p. 124902, Mar. 2024, doi: 10.1063/5.0196457. Available: https://doi.org/10.1063/5.0196457
[10]
C. J. Thompson, M. F. Van Duinen, M. M. Kelley, T. A. Arias, and S. J. Sibener, “Correlating Electron–Phonon Coupling and In Situ High-Temperature Atomic-Scale Surface Structure at the Metallic Nb(100) Surface by Helium Atom Scattering and Density Functional Theory,” J. Phys. Chem. C, Apr. 2024, doi: 10.1021/acs.jpcc.4c00852. Available: https://doi.org/10.1021/acs.jpcc.4c00852
[11]
W. H. Li, A. C. Bartnik, A. Fukasawa, M. Kaemingk, G. Lawler, N. Majernik, J. B. Rosenzweig, and J. M. Maxson, “Compensating slice emittance growth in high brightness photoinjectors using sacrificial charge.” arXiv, Apr. 09, 2024. doi: 10.48550/arXiv.2404.06312. Available: http://arxiv.org/abs/2404.06312
[12]
R. Roussel, J. P. Gonzalez-Aguilera, A. Edelen, E. Wisniewski, A. Ody, W. Liu, Y.-K. Kim, and J. Power, “Efficient 6-dimensional phase space reconstruction from experimental measurements using generative machine learning.” arXiv:2404.10853 [physics], Apr. 16, 2024. doi: 10.48550/arXiv.2404.10853. Available: http://arxiv.org/abs/2404.10853
[13]
Y. Yu, K. A. Spoth, M. Colletta, K. X. Nguyen, S. E. Zeltmann, X. S. Zhang, M. Paraan, M. Kopylov, C. Dubbeldam, D. Serwas, H. Siems, D. A. Muller, and L. F. Kourkoutis, “Dose-Efficient Cryo-Electron Microscopy for Thick Samples using Tilt-Corrected Scanning Transmission Electron Microscopy, Demonstrated on Cells and Single Particles.” bioRxiv, p. 2024.04.22.590491, Apr. 22, 2024. doi: 10.1101/2024.04.22.590491. Available: https://www.biorxiv.org/content/10.1101/2024.04.22.590491v1

2023

[1]
A. Bartnik, M. Kaemingk, C. Duncan, M. Andorf, J. Maxson, and M. Gordon, “A UV Pump laser System for micro-UED at Cornell,” pp. 4153-4155 pages, 3.1 MB, 2023, doi: 10.18429/JACOW-IPAC2023-THPA081. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-thpa081
[2]
P. Bhattacharyya, S. Karkare, S. Cardenas, M. Rizi, and G. Gevorkyan, “Phase space measurements of an electron beam using the ASU cryocooled 200 kV DC electron gun,” pp. 2182-2185 pages, 3.2 MB, 2023, doi: 10.18429/JACOW-IPAC2023-TUPL190. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-tupl190
[3]
S. Biedron, M. Martinez-Ramon, T. Bolin, M. Fedurin, M. Palmer, M. Babzien, A. Aslam, and J. Li, “Data analysis and control of an MeV ultrafast electron diffraction system and a photocathode laser and gun system using machine learning,” pp. 222-225 pages, 0.35 MB, 2023, doi: 10.18429/JACOW-IPAC2023-MOPA081. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-mopa081
[4]
O. Chubenko, D. Kim, C. Pierce, S. Karkare, M. Rizi, D. Filippetto, E. Simakov, J. Maxson, and A. Kachwala, “Study of nano-structured electron sources using photoemission electron microscope,” pp. 2174-2177 pages, 4.1 MB, 2023, doi: 10.18429/JACOW-IPAC2023-TUPL188. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-tupl188
[5]
O. Chubenko, P. Saha, P. Bhattacharyya, S. Karkare, H. Chae, R. Ahsan, A. Kachwala, and R. Kapadia, “Photonics-Integrated Photocathodes,” pp. 2178-2181 pages, 5.4 MB, 2023, doi: 10.18429/JACOW-IPAC2023-TUPL189. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-tupl189
[6]
E, V. Schoefer, W. Lin, G. Hoffstaetter, and D. Sagan, “Generalized gradient map tracking in the Siberian snakes of the AGS and RHIC,” pp. 2793-2796 pages, 1.4 MB, 2023, doi: 10.18429/JACOW-IPAC2023-WEPA064. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-wepa064
[7]
G. Gaitan, A. Holic, W. Howes, G. Kulina, M. Liepe, P. Quigley, J. Sears, Z. Sun, and B. Wendland, “Development of a Plasma-Enhanced Chemical Vapor Deposition System for High-Performance SRF Cavities,” p. 4 pages, 3.715 MB, 2023, doi: 10.18429/JACOW-SRF2023-MOPMB015. Available: https://jacow.org/srf2023/doi/JACoW-SRF2023-MOPMB015.html
[8]
A. Giribono, L. Faillace, C. Vaccarezza, M. Behtouei, D. Francescone, Rosenzweig, J. Giannessi, G. Silvi, M. Carillo, L. Ficcadenti, E. Chiadroni, L. Palumbo, O. Camacho, L. Giuliano, B. Spataro, F. Bosco, M. Migliorati, and F. Nguyen, “Advanced studies for the dynamics of high brightness electron beams with the code MILES,” pp. 3574-3577 pages, 0.45 MB, 2023, doi: 10.18429/JACOW-IPAC2023-WEPL190. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-wepl190
[9]
Y.-K. Kim, A. Edelen, C. Mayes, R. Roussel, and J. P. Gonzalez-Aguilera, “Towards fully differentiable accelerator modeling,” pp. 2797-2800 pages, 0.97 MB, 2023, doi: 10.18429/JACOW-IPAC2023-WEPA065. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-wepa065
[10]
T. Oseroff, Z. Sun, and M. Liepe, “Measurements of the amplitude-dependent microwave surface resistance of an Au/Nb bilayer,” Supercond. Sci. Technol., 2023, doi: 10.1088/1361-6668/acf88d. Available: http://iopscience.iop.org/article/10.1088/1361-6668/acf88d
[11]
G. Park, K. Deitrick, P. Piot, S. Benson, C. Phillips, E. Wisniewski, A. Marzouk, C. Whiteford, J. Power, and T. Xu, “Experimental demonstration of a straight-merger beamline,” pp. 3233-3235 pages, 10.0 MB, 2023, doi: 10.18429/JACOW-IPAC2023-WEPL053. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-wepl053
[12]
Piot,Philippe and Dick,Austin, “Electron microbunching using amplified optical stochastic cooling,” pp. 2755-2758 pages, 0.94 MB, 2023, doi: 10.18429/JACOW-IPAC2023-WEPA044. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-wepa044
[13]
Piot,Philippe and Dick,Austin, “Modeling of the amplified optical stochastic cooling experiment at IOTA,” pp. 2751-2754 pages, 0.6 MB, 2023, doi: 10.18429/JACOW-IPAC2023-WEPA043. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-wepa043
[14]
T. Robertazzi, W. Dai, V. Schoefer, K. Brown, W. Lin, G. Hoffstaetter, D. Sagan, and B. Huang, “Machine learning applications for orbit and optics correction at the Alternating Gradient Synchrotron,” pp. 4460-4463 pages, 1.5 MB, 2023, doi: 10.18429/JACOW-IPAC2023-THPL018. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-thpl018
[15]
T. Robertazzi, B. Dhital, W. Dai, P. Adams, V. Schoefer, Y. Gao, W. Lin, K. Brown, G. Hoffstaetter, D. Sagan, and B. Huang, “AGS booster beam-based main quadrupole transfer function measurements,” pp. 4436-4439 pages, 1.1 MB, 2023, doi: 10.18429/JACOW-IPAC2023-THPL009. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-thpl009
[16]
L. Shpani, S. Arnold, G. Gaitan, M. Liepe, T. Oseroff, R. Porter, N. Sitaraman, N. Stilin, Z. Sun, and N. Verboncoeur, “Development of High-performance Niobium-3 Tin Cavities at Cornell University,” p. 7 pages, 6.994 MB, 2023, doi: 10.18429/JACOW-SRF2023-WEIAA04. Available: https://jacow.org/srf2023/doi/JACoW-SRF2023-WEIAA04.html
[17]
N. Sitaraman, T. Arias, Z. Baraissov, G. Gaitan, M. Liepe, D. Muller, T. Oseroff, and Z. Sun, “Progress on Zirconium-Doped Niobium Surfaces,” p. 3 pages, 0.506 MB, 2023, doi: 10.18429/JACOW-SRF2023-TUPTB004. Available: https://jacow.org/srf2023/doi/JACoW-SRF2023-TUPTB004.html
[18]
N. Sitaraman, T. Arias, A. Harbick, M. Liepe, and M. Transtrum, “A Comprehensive Picture of Hydride Formation and Dissipation,” p. 5 pages, 2.031 MB, 2023, doi: 10.18429/JACOW-SRF2023-MOPMB020. Available: https://jacow.org/srf2023/doi/JACoW-SRF2023-MOPMB020.html
[19]
Z. Sun, Z. Baraissov, M. Liepe, D. Muller, T. Oseroff, and M. Thompson, “Materials Design for Superconducting RF Cavities: Electroplating Sn, Zr, and Au onto Nb and and Chemical Vapor Deposition,” p. 4 pages, 0.414 MB, 2023, doi: 10.18429/JACOW-SRF2023-TUPTB006. Available: https://jacow.org/srf2023/doi/JACoW-SRF2023-TUPTB006.html
[20]
Z. Sun, Z. Baraissov, R. D. Porter, L. Shpani, Y.-T. Shao, T. Oseroff, M. O. Thompson, D. A. Muller, and M. Liepe, “Smooth, homogeneous, high-purity Nb3Sn superconducting RF resonant cavity by seed-free electrochemical synthesis,” Supercond. Sci. Technol., 2023, doi: 10.1088/1361-6668/acf5ab. Available: http://iopscience.iop.org/article/10.1088/1361-6668/acf5ab
[21]
Z. Sun, T. Oseroff, Z. Baraissov, D. K. Dare, K. Howard, B. Francis, A. C. Hire, N. Sitaraman, T. A. Arias, M. K. Transtrum, R. Hennig, M. O. Thompson, D. A. Muller, and M. U. Liepe, “ZrNb(CO) RF Superconducting Thin Film with High Critical Temperature in the Theoretical Limit,” Advanced Electronic Materials, vol. 9, no. 8, p. 2300151, 2023, doi: 10.1002/aelm.202300151. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.202300151
[22]
C. Zhang, A. Bartnik, E. Echeverria, J. Maxson, and Pennington, “Reconstructing 4D source momentum space via aperture scans,” pp. 4595-4597 pages, 0.66 MB, 2023, doi: 10.18429/JACOW-IPAC2023-THPL071. Available: https://jacow.org/ipac2023/doi/jacow-ipac2023-thpl071
[23]
J. I. Mann, Y. Li, J. K. Nangoi, T. Arias, and J. B. Rosenzweig, “Material normal energy distribution for field emission analyses from monocrystalline surfaces,” J. Phys.: Conf. Ser., vol. 2420, no. 1, p. 012033, Jan. 2023, doi: 10.1088/1742-6596/2420/1/012033. Available: https://iopscience.iop.org/article/10.1088/1742-6596/2420/1/012033
[24]
C. J. Knill, H. Yamaguchi, K. Kawahara, G. Wang, E. Batista, P. Yang, H. Ago, N. Moody, and S. Karkare, “Near-Threshold Photoemission from Graphene-Coated Cu(110),” Phys. Rev. Appl., vol. 19, no. 1, p. 014015, Jan. 2023, doi: 10.1103/PhysRevApplied.19.014015. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.19.014015
[25]
S. A. Willson, R. G. Farber, A. C. Hire, R. G. Hennig, and S. J. Sibener, “Submonolayer and Monolayer Sn Adsorption and Diffusion Behavior on Oxidized Nb(100),” J. Phys. Chem. C, Jan. 2023, doi: 10.1021/acs.jpcc.2c08458. Available: https://doi.org/10.1021/acs.jpcc.2c08458
[26]
T. Paschen, R. Roussel, L. Seiffert, B. Kruse, C. Heide, P. Dienstbier, J. Mann, J. Rosenzweig, T. Fennel, and P. Hommelhoff, “Ultrafast Strong-Field Electron Emission and Collective Effects at a One-Dimensional Nanostructure,” ACS Photonics, Feb. 2023, doi: 10.1021/acsphotonics.2c01551. Available: https://doi.org/10.1021/acsphotonics.2c01551
[27]
P. Saha, O. Chubenko, J. Kevin Nangoi, T. Arias, E. Montgomery, S. Poddar, H. A. Padmore, and S. Karkare, “Theory of photoemission from cathodes with disordered surfaces,” Journal of Applied Physics, vol. 133, no. 5, p. 053102, Feb. 2023, doi: 10.1063/5.0135629. Available: https://aip.scitation.org/doi/full/10.1063/5.0135629
[28]
N. Majernik, G. Andonian, W. Lynn, S. Kim, C. Lorch, R. Roussel, S. Doran, E. Wisniewski, C. Whiteford, P. Piot, J. Power, and J. B. Rosenzweig, “Beam shaping using an ultrahigh vacuum multileaf collimator and emittance exchange beamline,” Phys. Rev. Accel. Beams, vol. 26, no. 2, p. 022801, Feb. 2023, doi: 10.1103/PhysRevAccelBeams.26.022801. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.26.022801
[29]
C. M. Pierce, D. B. Durham, F. Riminucci, S. Dhuey, I. Bazarov, J. Maxson, A. M. Minor, and D. Filippetto, “Experimental Characterization of Photoemission from Plasmonic Nanogroove Arrays,” Phys. Rev. Appl., vol. 19, no. 3, p. 034034, Mar. 2023, doi: 10.1103/PhysRevApplied.19.034034. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.19.034034
[30]
R. Roussel, A. Edelen, C. Mayes, D. Ratner, J. P. Gonzalez-Aguilera, S. Kim, E. Wisniewski, and J. Power, “Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and Differentiable Simulations,” Phys. Rev. Lett., vol. 130, no. 14, p. 145001, Apr. 2023, doi: 10.1103/PhysRevLett.130.145001. Available: http://arxiv.org/abs/2209.04505
[31]
F. Cropp, L. Moos, A. Scheinker, A. Gilardi, D. Wang, S. Paiagua, C. Serrano, P. Musumeci, and D. Filippetto, “Virtual-diagnostic-based time stamping for ultrafast electron diffraction,” Phys. Rev. Accel. Beams, vol. 26, no. 5, p. 052801, May 2023, doi: 10.1103/PhysRevAccelBeams.26.052801. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.26.052801. [Accessed: Jun. 05, 2023]
[32]
A. J. Dick and P. Piot, “Electron Microbunching using the Amplified Optical Stochastic Cooling Mechanism,” in Proc. of 14th International Particle Accelerator Conference, Venezia: JACOW Publishing, Geneva, Switzerland, May 2023. doi: https://doi.org/10.18429/JACoW-14th International Particle Accelerator Conference-WEPA044. Available: https://indico.jacow.org/event/41/contributions/2201
[33]
K. M. Siddiqui, D. B. Durham, F. Cropp, F. Ji, S. Paiagua, C. Ophus, N. C. Andresen, L. Jin, J. Wu, S. Wang, X. Zhang, W. You, M. Murnane, M. Centurion, X. Wang, D. S. Slaughter, R. A. Kaindl, P. Musumeci, A. M. Minor, and D. Filippetto, “Relativistic ultrafast electron diffraction at high repetition rates.” arXiv:2306.04900 [cond-mat, physics:physics], Jun. 07, 2023. doi: 10.48550/arXiv.2306.04900. Available: http://arxiv.org/abs/2306.04900
[34]
J. Lee, Z. Sung, A. A. Murthy, A. Grassellino, A. Romanenko, N. S. Sitaraman, and T. A. Arias, “Stress-induced structural changes in superconducting Nb thin films,” Phys. Rev. Mater., vol. 7, no. 6, p. L063201, Jun. 2023, doi: 10.1103/PhysRevMaterials.7.L063201. Available: https://link.aps.org/doi/10.1103/PhysRevMaterials.7.L063201
[35]
M. Andorf, J. K. Bae, A. Bartnik, L. Cultrera, J. Maxson, and I. Bazarov, “HERACLES: A high-voltage DC test beamline for high average current photocathodes,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1052, p. 168240, Jul. 2023, doi: 10.1016/j.nima.2023.168240. Available: https://www.sciencedirect.com/science/article/pii/S0168900223002309
[36]
Z. Sun, D. K. Dare, Z. Baraissov, D. A. Muller, M. O. Thompson, and M. U. Liepe, “Thermodynamic route of Nb3Sn nucleation: Role of oxygen,” APL Materials, vol. 11, no. 7, p. 071118, Jul. 2023, doi: 10.1063/5.0157659. Available: https://doi.org/10.1063/5.0157659
[37]
J. T. Paul, J. Lu, S. Shah, S. R. Xie, and R. G. Hennig, “Stability and magnetic behavior of exfoliable nanowire one-dimensional materials,” Phys. Rev. Mater., vol. 7, no. 7, p. 076002, Jul. 2023, doi: 10.1103/PhysRevMaterials.7.076002. Available: https://link.aps.org/doi/10.1103/PhysRevMaterials.7.076002
[38]
A. Kachwala, P. Saha, P. Bhattacharyya, E. Montgomery, O. Chubenko, and S. Karkare, “Demonstration of thermal limit mean transverse energy from cesium antimonide photocathodes,” Applied Physics Letters, vol. 123, no. 4, p. 044106, Jul. 2023, doi: 10.1063/5.0159924. Available: https://doi.org/10.1063/5.0159924
[39]
N. S. Sitaraman, Z. Sun, B. L. Francis, A. C. Hire, T. Oseroff, Z. Baraissov, T. A. Arias, R. G. Hennig, M. U. Liepe, D. A. Muller, and M. K. Transtrum, “Enhanced Surface Superconductivity of Niobium by Zirconium Doping,” Phys. Rev. Appl., vol. 20, no. 1, p. 014064, Jul. 2023, doi: 10.1103/PhysRevApplied.20.014064. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.20.014064
[40]
A. Aslam, S. G. Biedroń, Y. Ma, J. Murphy, M. Burger, J. Nees, A. G. R. Thomas, K. Krushelnick, and M. Martínez-Ramón, “Neural network-based control of an ultrafast laser,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1053, p. 168195, Aug. 2023, doi: 10.1016/j.nima.2023.168195. Available: https://www.sciencedirect.com/science/article/pii/S0168900223001857
[41]
J. Mann and J. Rosenzweig, “Classical cutoff energies for electron emission and scattering at field-enhancing nanostructures with large ponderomotive amplitudes,” J. Opt. Soc. Am. B, JOSAB, vol. 40, no. 8, pp. 2064–2072, Aug. 2023, doi: 10.1364/JOSAB.487453. Available: https://opg.optica.org/josab/abstract.cfm?uri=josab-40-8-2064
[42]
F. Bosco, O. Camacho, M. Carillo, E. Chiadroni, L. Faillace, A. Fukasawa, A. Giribono, L. Giuliano, N. Majernik, A. Mostacci, L. Palumbo, J. B. Rosenzweig, B. Spataro, C. Vaccarezza, and M. Migliorati, “Fast models for the evaluation of self-induced field effects in linear accelerators,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, p. 168642, Aug. 2023, doi: 10.1016/j.nima.2023.168642. Available: https://www.sciencedirect.com/science/article/pii/S0168900223006320
[43]
S. Arnold, T. Arias, G. Gaitan, M. Liepe, L. Shpani, N. Sitaraman, and Z. Sun, “Optimizing Growth of Niobium-3 Tin Through Pre-nucleation Chemical Treatments,” presented at the 21th International Conference on RF Superconductivity (SRF’23), Grand Rapids, MI, USA, 25-30 June 2023, JACOW Publishing, Geneva, Switzerland, Sep. 2023, pp. 337–341. doi: 10.18429/JACoW-SRF2023-MOPMB093. Available: https://accelconf.web.cern.ch/srf2023/doi/JACoW-SRF2023-MOPMB093.html
[44]
J. Lim, S. Sinha, A. C. Hire, J. S. Kim, P. M. Dee, R. S. Kumar, D. Popov, R. J. Hemley, R. G. Hennig, P. J. Hirschfeld, G. R. Stewart, and J. J. Hamlin, “Niobium substitution suppresses the superconducting critical temperature of pressurized MoB2,” Phys. Rev. B, vol. 108, no. 9, p. 094501, Sep. 2023, doi: 10.1103/PhysRevB.108.094501. Available: https://link.aps.org/doi/10.1103/PhysRevB.108.094501
[45]
Z. Sun, M. Ge, J. T. Maniscalco, V. Arrieta, S. R. McNeal, and M. U. Liepe, “Electrochemical polishing of chemical vapor deposited niobium thin films,” Thin Solid Films, vol. 780, p. 139948, Sep. 2023, doi: 10.1016/j.tsf.2023.139948. Available: https://www.sciencedirect.com/science/article/pii/S004060902300278X. [Accessed: Aug. 30, 2023]
[46]
C. J. Knill, S. Douyon, K. Kawahara, H. Yamaguchi, G. Wang, H. Ago, N. Moody, and S. Karkare, “Effects of nonlinear photoemission on mean transverse energy from metal photocathodes,” Phys. Rev. Accel. Beams, vol. 26, no. 9, p. 093401, Sep. 2023, doi: 10.1103/PhysRevAccelBeams.26.093401. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.26.093401
[47]
M. Yadav, M. Oruganti, S. Zhang, B. Naranjo, G. Andonian, Y. Zhuang, Ö. Apsimon, C. P. Welsch, and J. B. Rosenzweig, “Machine learning-based analysis of experimental electron beams and gamma energy distributions.” arXiv, Sep. 23, 2023. doi: 10.48550/arXiv.2209.12119. Available: http://arxiv.org/abs/2209.12119
[48]
A. Kachwala, “Bright Electron Beams from Plasmonic Spiral Photocathode,” presented at the Photocathode Physics for Photoinjectors, Stony Brook University, Stony Brook, NY, Oct. 2023. Available: https://indico.bnl.gov/event/19730
[49]
G. Lawler, F. Bosco, and J. Rosenzweig, “Improving Interface Physics Understanding in High-Frequency Cryogenic Normal Conducting Cavities.” arXiv, Oct. 17, 2023. doi: 10.48550/arXiv.2310.11578. Available: http://arxiv.org/abs/2310.11578
[50]
M. Yadav, M. H. Oruganti, B. Naranjo, J. Phillips, S. Liang, K. Letko, G. Andonian, and J. Rosenzweig, “Machine Learning-Based Spectrum Reconstruction and Modeling Beam Perturbation Effects on Betatron Radiation.” Preprints, Oct. 18, 2023. doi: 10.20944/preprints202310.1129.v1. Available: https://www.preprints.org/manuscript/202310.1129/v1
[51]
C. T. Parzyck, C. A. Pennington, W. J. I. DeBenedetti, J. Balajka, E. M. Echeverria, H. Paik, L. Moreschini, B. D. Faeth, C. Hu, J. K. Nangoi, V. Anil, T. A. Arias, M. A. Hines, D. G. Schlom, A. Galdi, K. M. Shen, and J. M. Maxson, “Atomically smooth films of CsSb: A chemically robust visible light photocathode,” APL Materials, vol. 11, no. 10, p. 101125, Oct. 2023, doi: 10.1063/5.0166334. Available: https://doi.org/10.1063/5.0166334
[52]
P. Saha, E. Montgomery, S. Poddar, O. Chubenko, and S. Karkare, “Ion-beam-assisted growth of cesium-antimonide photocathodes,” Journal of Vacuum Science & Technology B, vol. 41, no. 6, p. 064004, Oct. 2023, doi: 10.1116/6.0002909. Available: https://doi.org/10.1116/6.0002909
[53]
C. J. R. Duncan, M. Kaemingk, W. H. Li, M. B. Andorf, A. C. Bartnik, A. Galdi, M. Gordon, C. A. Pennington, I. V. Bazarov, H. J. Zeng, F. Liu, D. Luo, A. Sood, A. M. Lindenberg, M. W. Tate, D. A. Muller, J. Thom-Levy, S. M. Gruner, and J. M. Maxson, “Multi-scale time-resolved electron diffraction: A case study in moiré materials,” Ultramicroscopy, vol. 253, p. 113771, Nov. 2023, doi: 10.1016/j.ultramic.2023.113771. Available: https://www.sciencedirect.com/science/article/pii/S0304399123000888
[54]
Z. Sun, Z. Baraissov, C. A. Dukes, D. K. Dare, T. Oseroff, M. O. Thompson, D. A. Muller, and M. U. Liepe, “Surface oxides, carbides, and impurities on RF superconducting Nb and Nb3Sn: A comprehensive analysis,” Supercond. Sci. Technol., vol. 36, no. 11, p. 115030, Nov. 2023, doi: 10.1088/1361-6668/acff23. Available: http://arxiv.org/abs/2305.02467
[55]
F. Cropp, J. Ruan, J. Santucci, D. MacLean, A. H. Lumpkin, C. C. Hall, J. P. Edelen, A. Murokh, D. Broemmelsiek, and P. Musumeci, “FAST Low-Energy Beamline Studies: Toward High-Peak 5D Brightness Beams for FAST-GREENS,” Instruments, vol. 7, no. 4, Art. no. 4, Dec. 2023, doi: 10.3390/instruments7040042. Available: https://www.mdpi.com/2410-390X/7/4/42
[56]
P. Denham and P. Musumeci, “Analytical Scaling Laws for Radiofrequency-Based Pulse Compression in Ultrafast Electron Diffraction Beamlines,” Instruments, vol. 7, no. 4, Art. no. 4, Dec. 2023, doi: 10.3390/instruments7040049. Available: https://www.mdpi.com/2410-390X/7/4/49
[57]
E. Frame, A. Al Marzouk, O. Chubenko, S. Doran, P. Piot, J. Power, and E. Wisniewski, “Opportunities for Bright Beam Generation at the Argonne Wakefield Accelerator (AWA),” Instruments, vol. 7, no. 4, Art. no. 4, Dec. 2023, doi: 10.3390/instruments7040048. Available: https://www.mdpi.com/2410-390X/7/4/48
[58]
Y. Li, J. Mann, and J. Rosenzweig, “Modeling Field Electron Emission from a Flat Au (100) Surface with Density-Functional Theory,” Instruments, vol. 7, no. 4, Art. no. 4, Dec. 2023, doi: 10.3390/instruments7040047. Available: https://www.mdpi.com/2410-390X/7/4/47
[59]
C. M. Pierce and Y.-K. Kim, “Kernel Density Estimators for Axisymmetric Particle Beams,” Instruments, vol. 7, no. 4, Art. no. 4, Dec. 2023, doi: 10.3390/instruments7040044. Available: https://www.mdpi.com/2410-390X/7/4/44
[60]
R. R. Robles and J. B. Rosenzweig, “Shaping Micro-Bunched Electron Beams for Compact X-ray Free-Electron Lasers with Transverse Gradient Undulators,” Instruments, vol. 7, no. 4, Art. no. 4, Dec. 2023, doi: 10.3390/instruments7040035. Available: https://www.mdpi.com/2410-390X/7/4/35
[61]
R. Roussel, A. L. Edelen, T. Boltz, D. Kennedy, Z. Zhang, X. Huang, D. Ratner, A. S. Garcia, C. Xu, J. Kaiser, A. Eichler, J. O. Lubsen, N. M. Isenberg, Y. Gao, N. Kuklev, J. Martinez, B. Mustapha, V. Kain, W. Lin, S. M. Liuzzo, J. S. John, M. J. V. Streeter, R. Lehe, and W. Neiswanger, “Bayesian Optimization Algorithms for Accelerator Physics.” arXiv, Dec. 09, 2023. doi: 10.48550/arXiv.2312.05667. Available: http://arxiv.org/abs/2312.05667
[62]
K. Howard, M. U. Liepe, and Z. Sun, “Thermal annealing of DC sputtered Nb3Sn and V3Si thin films for superconducting radio-frequency cavities,” Journal of Applied Physics, vol. 134, no. 22, p. 225301, Dec. 2023, doi: 10.1063/5.0185404. Available: https://doi.org/10.1063/5.0185404

2022

[1]
A. Al Marzouk, S. Benson, K. Deitrick, D. Doran, J. Guo, G. Ha, A. Hutton, C. Mitchell, G.-T. Park, P. Piot, J. Power, J. Qiang, R. Ryne, S. Wang, C. Whiteford, E. Wisniewski, and T. Xu, “Preliminary Tests and Beam Dynamics Simulations of a Straight-Merger Beamline,” Proceedings of the 5th North American Particle Accelerator Conference, vol. NAPAC2022, p. 4 pages, 0.838 MB, 2022, doi: 10.18429/JACOW-NAPAC2022-MOPA72. Available: https://jacow.org/napac2022/doi/JACoW-NAPAC2022-MOPA72.html
[2]
M. Andorf, J. K. Bae, A. Bartnik, I. Bazarov, L. Cultrera, and J. Maxson, “HERACLES: A High Average Current Electron Beamline for Lifetime Testing of Novel Photocathodes,” in Proceedings of the 13th International Particle Accelerator Conference, JACoW Publishing, Geneva, Switzerland, 2022. doi: 10.18429/JACOW-IPAC2022-THPOMS036. Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-THPOMS036.html
[3]
M. Andorf, I. Bazarov, J. Encomendero, D. Jena, S. Levenson, J. Maxson, V. Protasenko, and H. Xing, “Characterization of Various GaN Samples for Photoinjectors,” Proceedings of the 13th International Particle Accelerator Conference, vol. IPAC2022, p. 3 pages, 2.016 MB, 2022, doi: 10.18429/JACOW-IPAC2022-MOPOTK027. Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-MOPOTK027.html
[4]
A. Aslam, M. Babzien, and S. Biedron, “Applications of Machine Learning in Photo-Cathode Injectors,” Proceedings of the 5th North American Particle Accelerator Conference, vol. NAPAC2022, p. 2 pages, 0.300 MB, 2022, doi: 10.18429/JACOW-NAPAC2022-TUPA41. Available: https://jacow.org/napac2022/doi/JACoW-NAPAC2022-TUPA41.html
[5]
C. V. Frederick (Eric), D. Filippetto, A. Gilardi, P. Musumeci, S. Paiagua, A. Scheinker, and D. Wang, “Toward Machine Learning-Based Adaptive Control and Global Feedback for Compact Accelerators,” in Proceedings of the 13th International Particle Accelerator Conference, JACoW Publishing, Geneva, Switzerland, 2022. doi: 10.18429/JACOW-IPAC2022-TUPOST055. Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-TUPOST055.html
[6]
M. Kelley, T. Arias, and N. Sitaraman, “Ab Initio Theory of the Impact of Grain Boundaries on the Superconducting Properties of Nb3Sn,” Proceedings of the 20th International Conference on RF Superconductivity, vol. SRF2021, p. 5 pages, 0.711 MB, 2022, doi: 10.18429/JACOW-SRF2021-SUPFDV002. Available: https://jacow.org/srf2021/doi/JACoW-SRF2021-SUPFDV002.html
[7]
V. Khachatryan, M. Andorf, I. Bazarov, W. Bergan, J. Crittenden, S. Levenson, J. Maxson, D. Rubin, J. Shanks, and S. Wang, “Helical Wiggler Design for Optical Stochastic Cooling at CESR,” in Proceedings of the 13th International Particle Accelerator Conference, JACoW Publishing, Geneva, Switzerland, 2022. doi: 10.18429/JACOW-IPAC2022-THPOPT066. Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-THPOPT066.html
[8]
J. Mann, T. Arias, S. Karkare, G. Lawler, J. K. Nangoi, J. Rosenzweig, and B. Wang, “Simulations of Nanoblade Cathode Emissions with Image Charge Trapping for Yield and Brightness Analyses,” Proceedings of the 5th North American Particle Accelerator Conference, vol. NAPAC2022, p. 4 pages, 0.859 MB, 2022, doi: 10.18429/JACOW-NAPAC2022-TUPA86. Available: https://jacow.org/napac2022/doi/JACoW-NAPAC2022-TUPA86.html
[9]
L. Shpani, T. Arias, S. Arnold, G. Gaitan, M. Kelley, M. Liepe, N. Sitaraman, and Z. Sun, “Study of Chemical Treatments to Optimize Niobium-3 Tin Growth in the Nucleation Phase,” Proceedings of the 13th International Particle Accelerator Conference, vol. IPAC2022, p. 4 pages, 2.081 MB, 2022, doi: 10.18429/JACOW-IPAC2022-TUPOTK036. Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-TUPOTK036.html
[10]
N. Verboncoeur, G. Gaitan, M. Liepe, R. Porter, L. Shpani, N. Stilin, and Z. Sun, “Next-Generation Nb₃Sn Superconducting RF Cavities,” Proceedings of the 31st International Linear Accelerator Conference, vol. LINAC2022, p. 5 pages, 2.449 MB, 2022, doi: 10.18429/JACOW-LINAC2022-TU1AA06. Available: https://jacow.org/linac2022/doi/JACoW-LINAC2022-TU1AA06.html
[11]
Y. Gao, W. Lin, K. A. Brown, X. Gu, G. H. Hoffstaetter, J. Morris, and S. Seletskiy, “Bayesian optimization experiment for trajectory alignment at the low energy RHIC electron cooling system,” Phys. Rev. Accel. Beams, vol. 25, no. 1, p. 014601, Jan. 2022, doi: 10.1103/PhysRevAccelBeams.25.014601. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.014601
[12]
J. N. Nelson, N. J. Schreiber, A. B. Georgescu, B. H. Goodge, B. D. Faeth, C. T. Parzyck, C. Zeledon, L. F. Kourkoutis, A. J. Millis, A. Georges, D. G. Schlom, and K. M. Shen, “Interfacial charge transfer and persistent metallicity of ultrathin SrIrO3/SrRuO3 heterostructures,” Science Advances, vol. 8, no. 5, p. eabj0481, Feb. 2022, doi: 10.1126/sciadv.abj0481. Available: https://www.science.org/doi/full/10.1126/sciadv.abj0481
[13]
W. H. Li, C. J. R. Duncan, M. B. Andorf, A. C. Bartnik, E. Bianco, L. Cultrera, A. Galdi, M. Gordon, M. Kaemingk, C. A. Pennington, L. F. Kourkoutis, I. V. Bazarov, and J. M. Maxson, “A kiloelectron-volt ultrafast electron micro-diffraction apparatus using low emittance semiconductor photocathodes,” Structural Dynamics, vol. 9, no. 2, p. 024302, Mar. 2022, doi: 10.1063/4.0000138. Available: https://aca.scitation.org/doi/10.1063/4.0000138
[14]
C. T. Parzyck, A. Galdi, J. K. Nangoi, W. J. I. DeBenedetti, J. Balajka, B. D. Faeth, H. Paik, C. Hu, T. A. Arias, M. A. Hines, D. G. Schlom, K. M. Shen, and J. M. Maxson, “Single-Crystal Alkali Antimonide Photocathodes: High Efficiency in the Ultrathin Limit,” Phys. Rev. Lett., vol. 128, no. 11, p. 114801, Mar. 2022, doi: 10.1103/PhysRevLett.128.114801. Available: http://arxiv.org/abs/2112.14366
[15]
L. Cultrera, E. Rocco, F. Shahedipour-Sandvik, L. D. Bell, J. K. Bae, I. V. Bazarov, P. Saha, S. Karkare, and A. Arjunan, “Photoemission characterization of N-polar III-nitride photocathodes as candidate bright electron beam sources for accelerator applications,” Journal of Applied Physics, vol. 131, no. 12, p. 124902, Mar. 2022, doi: 10.1063/5.0076488. Available: https://aip.scitation.org/doi/full/10.1063/5.0076488
[16]
A. A. McMillan, C. J. Thompson, M. M. Kelley, J. D. Graham, T. A. Arias, and S. J. Sibener, “A combined helium atom scattering and density-functional theory study of the Nb(100) surface oxide reconstruction: Phonon band structures and vibrational dynamics,” J. Chem. Phys., vol. 156, no. 12, p. 124702, Mar. 2022, doi: 10.1063/5.0085653. Available: https://aip.scitation.org/doi/10.1063/5.0085653
[17]
M. Gordon, W. H. Li, Maxson, J., and Kim, Young-Kee, “APS -APS April Meeting 2022 - Event - Ultrafast Electron Diffraction with Stray Sextupole Field Correction,” in Bulletin of the American Physical Society, American Physical Society, Apr. 2022. Available: https://meetings.aps.org/Meeting/APR22/Session/B07.1
[18]
P. Saha, O. Chubenko, G. S. Gevorkyan, A. Kachwala, C. J. Knill, C. Sarabia-Cardenas, E. Montgomery, S. Poddar, J. T. Paul, R. G. Hennig, H. A. Padmore, and S. Karkare, “Physically and chemically smooth cesium-antimonide photocathodes on single crystal strontium titanate substrates,” Appl. Phys. Lett., vol. 120, no. 19, p. 194102, May 2022, doi: 10.1063/5.0088306. Available: https://aip.scitation.org/doi/full/10.1063/5.0088306
[19]
J. Mann and J. Rosenzweig, “A Coherent Bi-Directional Virtual Detector for the 1-D Schrodinger Equation.” arXiv, May 20, 2022. doi: 10.48550/arXiv.2205.10461. Available: http://arxiv.org/abs/2205.10461
[20]
J. K. Nangoi, M. Gaowei, A. Galdi, J. M. Maxson, S. Karkare, J. Smedley, and T. A. Arias, “Ab initio study of the crystal and electronic structure of mono- and bi-alkali antimonides: Stability, Goldschmidt-like tolerance factors, and optical properties,” arXiv:2205.14322 [cond-mat], May 2022, doi: 10.48550/arXiv.2205.14322. Available: http://arxiv.org/abs/2205.14322
[21]
A. J. Dick and P. Piot, “Electron Beam Shaping Techniques Using Optical Stochastic Cooling,” in Proc. IPAC2022, Bangkok, Thailand: JACOW Publishing, Geneva, Switzerland, Jun. 2022.
[22]
S. Levenson J., M. B. Andorf, I. V. Bazarov, V. Khachatryan, J. M. Maxson, D. L. Rubin, and S. Wang, “A Path-Length Stability Experiment for Optical Stochastic Cooling at the Cornell Electron Storage Ring,” in Proc. IPAC2022, Bangkok, Thailand: JACOW Publishing, Geneva, Switzerland, Jun. 2022.
[23]
S. Levenson J., M. B. Andorf, I. V. Bazarov, D. C. Burke, J. M. Maxson, D. L. Rubin, and S. Wang, “Light Path Construction for an Optical Stochastic Cooling Stability Test at the Cornell Electron Storage Ring,” in Proc. IPAC2022, Bangkok, Thailand: JACOW Publishing, Geneva, Switzerland, Jun. 2022.
[24]
L. Faillace, R. Agustsson, M. Behtouei, F. Bosco, D. Bruhwiler, O. Camacho, M. Carillo, A. Fukasawa, I. Gadjev, A. Giribono, L. Giuliano, S. Kutsaev, N. Majernik, M. Migliorati, A. Mostacci, A. Murokh, L. Palumbo, B. Spataro, S. Tantawi, C. Vaccarezza, O. Williams, and J. B. Rosenzweig, “High field hybrid photoinjector electron source for advanced light source applications,” Phys. Rev. Accel. Beams, vol. 25, no. 6, p. 063401, Jun. 2022, doi: 10.1103/PhysRevAccelBeams.25.063401. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.063401
[25]
C. J. R. Duncan, M. Kaemingk, W. H. Li, M. B. Andorf, A. C. Bartnik, A. Galdi, M. Gordon, C. A. Pennington, I. V. Bazarov, H. J. Zeng, F. Liu, D. Luo, A. Sood, A. M. Lindenberg, M. W. Tate, D. A. Muller, J. Thom-Levy, S. M. Gruner, and J. M. Maxson, “Multi-scale time-resolved electron diffraction enabled by high repetition rate, high dynamic range direct electron detection.” Number: arXiv:2206.08404 arXiv:2206.08404 [cond-mat, physics:physics], Jun. 16, 2022. doi: 10.48550/arXiv.2206.08404. Available: http://arxiv.org/abs/2206.08404
[26]
J. Jarvis, V. Lebedev, A. Romanov, D. Broemmelsiek, K. Carlson, S. Chattopadhyay, A. Dick, D. Edstrom, I. Lobach, S. Nagaitsev, H. Piekarz, P. Piot, J. Ruan, J. Santucci, G. Stancari, and A. Valishev, “Experimental demonstration of optical stochastic cooling,” Nature, vol. 608, no. 7922, Art. no. 7922, Aug. 2022, doi: 10.1038/s41586-022-04969-7. Available: http://arxiv.org/abs/2203.08899
[27]
C. Zhang, Y.-T. Shao, Z. Baraissov, C. J. Duncan, A. Hanuka, A. L. Edelen, J. M. Maxson, and D. A. Muller, “Bayesian Optimization for Multi-dimensional Alignment: Tuning Aberration Correctors and Ptychographic Reconstructions,” Microsc Microanal, vol. 28, no. S1, pp. 3146–3148, Aug. 2022, doi: 10.1017/S1431927622011692. Available: https://www.cambridge.org/core/product/identifier/S1431927622011692/type/journal_article
[28]
F. Bosco, O. Camacho, M. Carillo, E. Chiadroni, L. Faillace, A. Fukasawa, A. Giribono, L. Giuliano, N. Najernik, A. Mostacci, L. Palumbo, B. Spataro, C. Vaccarezza, J. B. Rosenzweig, and M. Migliorati, “A fast tracking code for evaluating collective effects in linear accelerators.” arXiv:2208.06466 [physics], Aug. 12, 2022. doi: 10.48550/arXiv.2208.06466. Available: http://arxiv.org/abs/2208.06466
[29]
M. Gordon, W. H. Li, M. B. Andorf, A. C. Bartnik, C. J. R. Duncan, M. Kaemingk, C. A. Pennington, I. V. Bazarov, Y.-K. Kim, and J. M. Maxson, “Four-dimensional emittance measurements of ultrafast electron diffraction optics corrected up to sextupole order,” Phys. Rev. Accel. Beams, vol. 25, no. 8, p. 084001, Aug. 2022, doi: 10.1103/PhysRevAccelBeams.25.084001. Available: http://arxiv.org/abs/2207.13634
[30]
N. S. Sitaraman, Z. Sun, B. Francis, A. C. Hire, T. Oseroff, Z. Baraissov, T. A. Arias, R. Hennig, M. U. Liepe, D. A. Muller, and M. K. Transtrum, “Theory of Nb-Zr Alloy Superconductivity and First Experimental Demonstration for Superconducting Radio-Frequency Cavity Applications,” Aug. 2022, doi: 10.48550/arXiv.2208.10678. Available: http://arxiv.org/abs/2208.10678
[31]
J. K. Bae, M. Andorf, A. Bartnik, A. Galdi, L. Cultrera, J. Maxson, and I. Bazarov, “Operation of Cs–Sb–O activated GaAs in a high voltage DC electron gun at high average current,” AIP Advances, vol. 12, no. 9, p. 095017, Sep. 2022, doi: 10.1063/5.0100794. Available: https://pubs.aip.org/adv/article/12/9/095017/2819615/Operation-of-Cs-Sb-O-activated-GaAs-in-a-high
[32]
S. Deyo, M. Kelley, N. Sitaraman, T. Oseroff, D. B. Liarte, T. Arias, M. Liepe, and J. P. Sethna, “Dissipation by surface states in superconducting radio-frequency cavities,” Phys. Rev. B, vol. 106, no. 10, p. 104502, Sep. 2022, doi: 10.1103/PhysRevB.106.104502. Available: https://link.aps.org/doi/10.1103/PhysRevB.106.104502
[33]
J. Gibson, A. Hire, and R. G. Hennig, “Data-augmentation for graph neural network learning of the relaxed energies of unrelaxed structures,” npj Comput Mater, vol. 8, no. 1, Art. no. 1, Sep. 2022, doi: 10.1038/s41524-022-00891-8. Available: http://arxiv.org/abs/2202.13947
[34]
A. C. Hire, S. Sinha, J. Lim, J. S. Kim, P. M. Dee, L. Fanfarillo, J. J. Hamlin, R. G. Hennig, P. J. Hirschfeld, and G. R. Stewart, “High critical field superconductivity at ambient pressure in MoB2 stabilized in the P6/mmm structure via Nb substitution,” Phys. Rev. B, vol. 106, no. 17, p. 174515, Nov. 2022, doi: 10.1103/PhysRevB.106.174515. Available: https://link.aps.org/doi/10.1103/PhysRevB.106.174515
[35]
A. Kachwala, O. Chubenko, D. Kim, E. I. Simakov, and S. Karkare, “Quantum efficiency, photoemission energy spectra, and mean transverse energy of ultrananocrystalline diamond photocathode,” Journal of Applied Physics, vol. 132, no. 22, p. 224901, Dec. 2022, doi: 10.1063/5.0130114. Available: https://aip.scitation.org/doi/10.1063/5.0130114

2021

[1]
A. Dick, J. Jarvis, and P. Piot, “Characterization and Simulation of Optical Delay System for the Proof-of-Principle Experiment of Optical Stochastic Cooling at IOTA,” in Proceedings of the 12th International Particle Accelerator Conference, JACoW Publishing, Geneva, Switzerland, 2021, p. 4 pages, 1.880 MB. doi: 10.18429/JACOW-IPAC2021-WEPAB270. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB270.html
[2]
A. Dick, J. Jarvis, and P. Piot, “Numerical Modelling of the Optical Stochastic Cooling Experiment at IOTA,” in Proceedings of the 12th International Particle Accelerator Conference, JACoW Publishing, Geneva, Switzerland, 2021, p. 4 pages, 0.299 MB. doi: 10.18429/JACOW-IPAC2021-WEPAB271. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB271.html
[3]
A. Fukasawa, G. Andonian, O. Camacho, C. Hansel, G. Lawler, Z. Li, W. Lynn, N. Majernik, J. Mann, P. Manwani, B. Naranjo, R. Robles, J. Rosenzweig, Y. Sakai, S. Tantawi, O. Williams, and M. Yadav, “Advanced Photoinjector Development at the UCLA SAMURAI Laboratory,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.298 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB056. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB056.html
[4]
G. Lawler, Majernik, Nathan, A. Fukasawa, Y. Sakai, and J. B. Rosenzweig, “Cryocooler Technology for Electron Particle Accelerators,” in Cryocoolers 21, Boulder, CO, 2021.
[5]
C. Knill, S. Karkare, and H. Padmore, “Near-Threshold Nonlinear Photoemission From Cu(100),” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.154 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB099. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB099.html
[6]
G. Lawler, A. Fukasawa, Z. Li, N. Majernik, J. Rosenzweig, A. Suraj, and M. Yadav, “RF Testbed for Cryogenic Photoemission Studies,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.968 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB096. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB096.html
[7]
G. Lawler, N. Majernik, and J. Rosenzweig, “Cryogenic Component and Material Testing for Compact Electron Beamlines,” in Proceedings of the 12th International Particle Accelerator Conference, JACoW Publishing, Geneva, Switzerland, 2021, p. 4 pages, 0.680 MB. doi: 10.18429/JACOW-IPAC2021-WEPAB098. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB098.html
[8]
G. Lawler, J. Mann, J. Rosenzweig, R. Roussel, and V. Yu, “Initial Nanoblade-Enhanced Laser-Induced Cathode Emission Measurements,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 1.601 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB097. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB097.html
[9]
N. Majernik, G. Andonian, O. Camacho, A. Fukasawa, G. Lawler, W. Lynn, B. Naranjo, R. Robles, J. Rosenzweig, Y. Sakai, and O. Williams, “Demonstration FELs Using UC-XFEL Technologies at the SAMURAI Laboratory,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.266 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB092. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB092.html
[10]
J. Mann, T. Arias, G. Lawler, J. K. Nangoi, and J. Rosenzweig, “Simulations of Nanoblade-Enhanced Laser-Induced Cathode Emissions and Analyses of Yield, MTE, and Brightness,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB147. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB147.html
[11]
P. Manwani, D. Bruhwiler, B. Hidding, M. Litos, N. Majernik, and J. Rosenzweig, “High Brightness Electron Beams from Dragon Tail Injection and the E-312 Experiment at FACET-II,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.274 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB146. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB146.html
[12]
A. Romanov, S. Nagaitsev, J. Santucci, G. Stancari, A. Valishev, N. Kuklev, and I. Lobach, “3D Tracking of Single Electron in IOTA,” in IPAC 2021, Campinas, SP, Brazil: JACoW Publishing, 2021. doi: 10.18429/JACoW-IPAC2021-THXB01. Available: https://accelconf.web.cern.ch/ipac2021/papers/thxb01.pdf
[13]
R. Roussel and A. Hanuka, “Towards Hysteresis Aware Bayesian Regression and Optimization,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.556 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB289. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB289.html
[14]
P. Saha, O. Chubenko, G. Gevorkyan, A. Kachwala, S. Karkare, C. Knill, E. Montgomery, H. Padmore, and S. Poddar, “Optical and Surface Characterization of Alkali-Antimonide Photocathodes,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.591 MB, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB142. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB142.html
[15]
Y. Shao, G. Lawler, B. Naranjo, and J. Rosenzweig, “Tapered Modular Quadrupole Magnet to Reduce Higher-Order Optical Aberrations,” in Proceedings of the 12th International Particle Accelerator Conference, JACoW Publishing, Geneva, Switzerland, 2021. doi: 10.18429/JACOW-IPAC2021-THPAB328. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB328.html
[16]
Z. Sun, M. Ge, M. Liepe, T. Oseroff, R. D. Porter, A. Connolly, and M. Thompson, “Surface Roughness Reduction of Nb3Sn Thin Films via Laser Annealing for Superconducting Radio-Frequency Cavities,” in Proc. IPAC 2021, Virtual: JACoW Publishing, 2021. Available: https://accelconf.web.cern.ch/ipac2021/papers/tupab338.pdf
[17]
V. Yu, C. Hansel, G. Lawler, J. Mann, M. Mills, and J. Rosenzweig, “Magneto-Optical Trap Cathode for High Brightness Applications,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB344. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB344.html
[18]
S. Nagaitsev, Z. Huang, J. Power, J.-L. Vay, P. Piot, L. Spentzouris, J. Rosenzweig, Y. Cai, S. Cousineau, M. Conde, M. Hogan, A. Valishev, M. Minty, T. Zolkin, X. Huang, V. Shiltsev, J. Seeman, J. Byrd, Y. Hao, B. Dunham, B. Carlsten, A. Seryi, and R. Patterson, “Accelerator and Beam Physics Research Goals and Opportunities,” arXiv:2101.04107 [physics], Jan. 2021, doi: 10.48550/arXiv.2101.04107. Available: http://arxiv.org/abs/2101.04107
[19]
J. Carlson, A. Pack, M. K. Transtrum, J. Lee, D. N. Seidman, D. B. Liarte, N. Sitaraman, A. Senanian, J. P. Sethna, T. Arias, S. Posen, and M. M. Kelley, “Analysis of Magnetic Vortex Dissipation in Sn-Segregated Boundaries in Nb3Sn SRF Cavities,” Phys. Rev. B, vol. 103, no. 2, p. 024516, Jan. 2021, doi: 10.1103/PhysRevB.103.024516. Available: https://link.aps.org/doi/10.1103/PhysRevB.103.024516
[20]
B. Holst, G. Alexandrowicz, N. Avidor, G. Benedek, G. Bracco, W. E. Ernst, D. Farías, A. P. Jardine, K. Lefmann, J. R. Manson, R. Marquardt, S. M. Artés, S. J. Sibener, J. W. Wells, A. Tamtögl, and W. Allison, “Material properties particularly suited to be measured with helium scattering: selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic substrates, topological insulators and superconducting radio frequency materials,” Phys. Chem. Chem. Phys., Feb. 2021, doi: 10.1039/D0CP05833E. Available: https://pubs.rsc.org/en/content/articlelanding/2021/cp/d0cp05833e
[21]
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto, “Demonstration of adaptive machine learning-based distribution tracking on a compact accelerator: Towards enabling model-based 6D non-invasive beam diagnostics,” arXiv:2102.10510 [physics], Feb. 2021, doi: 10.48550/arXiv.2102.10510. Available: http://arxiv.org/abs/2102.10510
[22]
N. S. Sitaraman, M. M. Kelley, R. D. Porter, M. U. Liepe, T. A. Arias, J. Carlson, A. R. Pack, M. K. Transtrum, and R. Sundararaman, “Effect of the density of states at the Fermi level on defect free energies and superconductivity: A case study of Nb3Sn,” Phys. Rev. B, vol. 103, no. 11, p. 115106, Mar. 2021, doi: 10.1103/PhysRevB.103.115106. Available: https://link.aps.org/doi/10.1103/PhysRevB.103.115106
[23]
N. S. Sitaraman, M. M. Kelley, R. D. Porter, M. U. Liepe, T. A. Arias, J. Carlson, A. R. Pack, M. K. Transtrum, and R. Sundararaman, “Effect of the density of states at the Fermi level on defect free energies and superconductivity: A case study of Nb3Sn,” Phys. Rev. B, vol. 103, no. 11, p. 115106, Mar. 2021, doi: 10.1103/PhysRevB.103.115106. Available: https://link.aps.org/doi/10.1103/PhysRevB.103.115106
[24]
L. Gupta, A. Edelen, N. Neveu, A. Mishra, C. Mayes, and Y.-K. Kim, “Improving Surrogate Model Accuracy for the LCLS-II Injector Frontend Using Convolutional Neural Networks and Transfer Learning,” arXiv:2103.07540 [physics], Mar. 2021, doi: 10.48550/arXiv.2103.07540. Available: http://arxiv.org/abs/2103.07540
[25]
Z. Sun, “Study of alternative materials for next generation SRF cavities at Cornell University,” presented at the 9th International Workshop on Thin Films and New Ideas in Pushing the Limits of RF Superconductivity, Jefferson Laboratory, Newport News, VA, Mar. 15, 2021.
[26]
C. M. Pierce, J. K. Bae, A. Galdi, L. Cultrera, I. Bazarov, and J. Maxson, “Beam brightness from Cs–Te near the photoemission threshold,” Appl. Phys. Lett., vol. 118, no. 12, p. 124101, Mar. 2021, doi: 10.1063/5.0044917. Available: https://aip.scitation.org/doi/full/10.1063/5.0044917
[27]
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto, “Adaptive deep learning for time-varying systems with hidden parameters: Predicting changing input beam distributions of compact particle accelerators.” Mar. 23, 2021. doi: 10.48550/arXiv.2102.10510. Available: http://arxiv.org/abs/2102.10510
[28]
Gupta, Lipi, Mishra, Aashwin, and Edelen, Auralee, “Deep Learning Methods for Uncertainty Quantification at the SLAC Linac Coherent Light Source,” in Bulletin of the American Physical Society, American Physical Society, Apr. 2021. Available: https://meetings.aps.org/Meeting/APR21/Session/E15.9
[29]
Roussel, Ryan, Hanuka, Adi, and Edelen, Auralee, “Multi-Objective Bayesian Optimization for Online Accelerator Tuning,” in Bulletin of the American Physical Society, American Physical Society, Apr. 2021. Available: https://meetings.aps.org/Meeting/APR21/Session/E15.7
[30]
Hansel, Claire, Yadav, Monika, An, Weiming, Manwani, Pratik, Mori, Warren, and J. Rosenzweig, “Plasma Wakefield Accelerators with Ion Motion and the E-314 Experiment at FACET-II,” in Bulletin of the American Physical Society, American Physical Society, Apr. 2021. Available: https://meetings.aps.org/Meeting/APR21/Session/T08.2
[31]
Manwani, Pratik, Majernik, Nathan, Hansel, Claire, and Rosenzweig, James, “Optical-period bunch trains to resonantly excite TV/m wakefields in the quasi-nonlinear regime and the E-317 experiment at FACET-II,” in Bulletin of the American Physical Society, American Physical Society, Apr. 2021. Available: https://meetings.aps.org/Meeting/APR21/Session/T08.3
[32]
Kuklev, Nikita, Valishev, Alexander, Nagaitsev, Sergei, and Kim, Young-Kee, “Experimental Studies of Beam Dynamics in Integrable Storage Rings,” in Bulletin of the American Physical Society, American Physical Society, Apr. 2021. Available: https://meetings.aps.org/Meeting/APR21/Session/Z07.3
[33]
J. P. Gonzalez-Aguilera, R. Roussel, Y.-K. Kim, W. Liu, P. Piot, J. G. Power, and E. Wisniewski, “Beam Diagnostics for Multi-Objective Bayesian Optimization at the Argonne Wakefield Accelerator Facility,” in Proc. IPAC 2021, Campinas, SP, Brazil: JACoW Publishing, May 2021. doi: 10.18429/JACoW-IPAC2021-MOPAB304. Available: https://accelconf.web.cern.ch/ipac2021/papers/mopab304.pdf
[34]
V. Guo, P. Denham, P. Musumeci, A. Ody, and Y. Park, “4D Beam Tomography at the UCLA PEGASUS Laboratory,” in Proc. IBIC2021, Pohang, Rep. of Korea: JACoW Publishing, May 2021. doi: 10.18429/JACoW-IBIC2021-TUPP15. Available: https://accelconf.web.cern.ch/ibic2021/papers/tupp15.pdf
[35]
Montgomery, C. Jing, S. Poddar, O. Chubenko, G. Gevorkyan, S. Karkare, P. Saha, H. A. Padmore, R. G. Hennig, and J. T. Paul, “Towards Ultra-Smooth Alkali Antimonide Photocathode Epitaxy,” in Proc. IPAC 2021, Campinas, SP, Brazil: JACoW Publishing, May 2021. doi: 10.18429/JACoW-IPAC2021-WEPAB169. Available: https://accelconf.web.cern.ch/ipac2021/papers/wepab169.pdf
[36]
V. Lebedev, J. Jarvis, H. Piekarz, A. Romanov, J. Ruan, and M. Andorf, “The design of Optical Stochastic Cooling for IOTA,” J. Inst., vol. 16, no. 05, p. T05002, May 2021, doi: 10.1088/1748-0221/16/05/T05002. Available: https://iopscience.iop.org/article/10.1088/1748-0221/16/05/T05002
[37]
J. Mann and J. Rosenzweig, “Semi-Classical Cutoff Energies for Electron Emission and Scattering at Field-Enhancing Nanostructures with Large Ponderomotive Amplitudes,” arXiv:2105.10601 [cond-mat], May 2021, doi: 10.48550/arXiv.2105.10601. Available: http://arxiv.org/abs/2105.10601
[38]
G. Gaitan, A. T. Holic, G. Kulina, J. Sears, M. U. Liepe, P. Bishop, and Z. Sun, “Development of a System for Coating SRF Cavities using Remote Plasma CVD,” in Proc. SRF ’21, Lansing, MI: JACoW Publishing, Jun. 2021. doi: 10.18429/JACoW-SRF2021-SUPTEV007. Available: https://srf2021.vrws.de/papers/suptev007.pdf
[39]
K. Howard, Z. Sun, and M. U. Liepe, “Thermal Annealing of Sputtered Nb3Sn and V3Si Thin Films for Superconducting RF Cavities,” in Proc. SRF ’21, Lansing, MI: JACoW Publishing, Jun. 2021. doi: 10.18429/JACoW-SRF2021-SUPFDV009. Available: https://srf2021.vrws.de/papers/supfdv009.pdf
[40]
T. Oseroff, M. U. Liepe, and Z. Sun, “Sample Test Systems for Next-Gen SRF Surfaces,” in Proc. SRF ’21, Lansing, MI: JACoW Publishing, Jun. 2021. doi: 10.18429/JACoW-SRF2021-TUOFDV07. Available: https://srf2021.vrws.de/papers/tuofdv07.pdf
[41]
R. D. Porter, N. Banerjee, and M. U. Liepe, “Dynamic Temperature Mapping of Nb3Sn Cavities,” in Proc. SRF ’21, Lansing, MI: JACoW Publishing, Jun. 2021. doi: 10.18429/JACoW-SRF2021-SUPCAV003. Available: https://srf2021.vrws.de/papers/supcav003.pdf
[42]
R. D. Porter, N. Banerjee, and M. U. Liepe, “Dynamics of RF Dissipation Probed via High-speed Temperature Mapping,” in Proc. SRF ’21, Lansing, MI: JACoW Publishing, Jun. 2021. doi: 10.18429/JACoW-SRF2021-TUOFDV05. Available: https://srf2021.vrws.de/papers/tuofdv05.pdf
[43]
N. Sitaraman, T. A. Arias, Z. Baraissov, M. M. Kelley, D. A. Muller, M. U. Liepe, R. D. Porter, and Z. Sun, “New recipes to optimize the Niobium Oxide surface from first-principles calculations,” in Proc. SRF ’21, Lansing, MI: JACoW Publishing, Jun. 2021. doi: 10.18429/JACoW-SRF2021-TUPFDV010. Available: https://srf2021.vrws.de/papers/tupfdv010.pdf
[44]
Z. Sun, G. Gaitan, M. Ge, K. Howard, M. U. Liepe, R. D. Porter, T. Oseroff, T. A. Arias, Z. Baraissov, M. Kelley, D. A. Muller, J. Sethna, N. Sitamaran, and K. D. Dobson, “Toward Stoichiometric and Low-Surface-Roughness Nb3SnThin Films via Direct Electrochemical Deposition,” in Proc. SRF ’21, Lansing, MI: JACoW Publishing, Jun. 2021. doi: 10.18429/JACoW-SRF2021-WEOTEV03. Available: https://srf2021.vrws.de/papers/weotev03.pdf
[45]
Z. Sun, M. U. Liepe, T. Oseroff, and X. Deng, “Characterization of Atomic-Layer-Deposited NbTiN and NbTiN/AlN Films for SIS Multilayer Structures,” in Proc. SRF ’21, Lansing, MI: JACoW Publishing, Jun. 2021. doi: 10.18429/JACoW-SRF2021-WEPTEV012. Available: https://srf2021.vrws.de/papers/weptev012.pdf
[46]
Z. Sun, M. U. Liepe, T. Oseroff, R. D. Porter, T. A. Arias, Z. Baraissov, D. A. Muller, N. Sitaraman, D. Johnson-McDaniel, M. Salim, and C. Dukes, “Surface Oxides on Nb and Nb3Sn Surfaces: Toward a Deeper Understanding,” in Proc. SRF ’21, Lansing, MI: JACoW Publishing, Jun. 2021. doi: 10.18429/JACoW-SRF2021-THPTEV004. Available: https://srf2021.vrws.de/papers/thptev004.pdf
[47]
R. Roussel, A. Hanuka, and A. Edelen, “Multiobjective Bayesian optimization for online accelerator tuning,” Phys. Rev. Accel. Beams, vol. 24, no. 6, p. 062801, Jun. 2021, doi: 10.1103/PhysRevAccelBeams.24.062801. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.062801
[48]
R. R. Robles, O. Camacho, A. Fukasawa, N. Majernik, and J. B. Rosenzweig, “Versatile, high brightness, cryogenic photoinjector electron source,” Phys. Rev. Accel. Beams, vol. 24, no. 6, p. 063401, Jun. 2021, doi: 10.1103/PhysRevAccelBeams.24.063401. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.063401
[49]
S. T. Wang, M. B. Andorf, I. V. Bazarov, W. F. Bergan, V. Khachatryan, J. M. Maxson, and D. L. Rubin, “Simulation of transit-time optical stochastic cooling process in Cornell Electron Storage Ring,” Phys. Rev. Accel. Beams, vol. 24, p. 064001, Jun. 2021, doi: 10.1103/PhysRevAccelBeams.24.064001. Available: https://doi.org/10.1103/PhysRevAccelBeams.24.064001
[50]
A. Galdi, J. Balajka, W. J. I. DeBenedetti, L. Cultrera, I. V. Bazarov, M. A. Hines, and J. M. Maxson, “Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates,” Appl. Phys. Lett., vol. 118, no. 24, p. 244101, Jun. 2021, doi: 10.1063/5.0053186. Available: https://aip.scitation.org/doi/10.1063/5.0053186
[51]
N. Majernik, G. Andonian, R. Roussel, S. Doran, G. Ha, J. Power, E. Wisniewski, and J. Rosenzweig, “Multileaf Collimator for Real-Time Beam Shaping using Emittance Exchange,” arXiv:2107.00125 [physics], Jun. 2021, doi: 10.48550/arXiv.2107.00125. Available: http://arxiv.org/abs/2107.00125
[52]
A. Dick, J. Jarvis, and P. Piot, “Characterization of the Sub-mm Delay Plates for the IOTA Optical-Stochastic-Cooling Experiment,” FERMILAB-FN-1130-AD, 1827262, oai:inspirehep.net:1950815, Jul. 2021. doi: 10.2172/1827262. Available: 2021
[53]
C. Zhang, Z. Baraissov, C. Duncan, A. Hanuka, A. Edelen, J. Maxson, and D. Muller, “Aberration Corrector Tuning with Machine-Learning-Based Emittance Measurements and Bayesian Optimization,” Microscopy and Microanalysis, vol. 27, no. S1, pp. 810–812, Aug. 2021, doi: 10.1017/S1431927621003214. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/aberration-corrector-tuning-with-machinelearningbased-emittance-measurements-and-bayesian-optimization/D89FA657D93568EE0A1DC768248FDFC0
[54]
D. B. Durham, C. M. Pierce, F. Riminucci, S. R. Loria, K. Kanellopulos, I. Bazarov, J. Maxson, S. Cabrini, A. M. Minor, and D. Filippetto, “Characterizing plasmon-enhanced photoemitters for bright ultrafast electron beams,” in Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX, International Society for Optics and Photonics, Aug. 2021, p. 117972D. doi: 10.1117/12.2597708. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11797/117972D/Characterizing-plasmon-enhanced-photoemitters-for-bright-ultrafast-electron-beams/10.1117/12.2597708.short
[55]
J. Lim, A. C. Hire, Y. Quan, J. Kim, L. Fanfarillo, S. R. Xie, R. S. Kumar, C. Park, R. J. Hemley, Y. K. Vohra, R. G. Hennig, P. J. Hirschfeld, G. R. Stewart, and J. J. Hamlin, “High-pressure study of the low-Z rich superconductor Be22Re,” Phys. Rev. B, vol. 104, no. 6, p. 064505, Aug. 2021, doi: 10.1103/PhysRevB.104.064505. Available: https://link.aps.org/doi/10.1103/PhysRevB.104.064505
[56]
O. Chubenko, S. Karkare, D. A. Dimitrov, J. K. Bae, L. Cultrera, I. Bazarov, and A. Afanasev, “Monte Carlo modeling of spin-polarized photoemission from p-doped bulk GaAs,” Journal of Applied Physics, vol. 130, no. 6, p. 063101, Aug. 2021, doi: 10.1063/5.0060151. Available: https://aip.scitation.org/doi/full/10.1063/5.0060151
[57]
T. Y. Posos, O. Chubenko, and S. V. Baryshev, “Confirmation of Transit-Time Limited Field Emission in Advanced Carbon Materials with Fast Pattern Recognition Algorithm,” arXiv:2108.07440 [physics], Aug. 2021, doi: 10.48550/arXiv.2108.07440. Available: http://arxiv.org/abs/2108.07440
[58]
M. Gordon, S. B. van der Geer, J. Maxson, and Y.-K. Kim, “Point-to-point Coulomb effects in high brightness photoelectron beam lines for ultrafast electron diffraction,” Phys. Rev. Accel. Beams, vol. 24, no. 8, p. 084202, Aug. 2021, doi: 10.1103/PhysRevAccelBeams.24.084202. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.084202
[59]
J. T. Paul, A. Galdi, C. Parzyck, K. M. Shen, J. Maxson, and R. G. Hennig, “Computational synthesis of substrates by crystal cleavage,” npj Comput Mater, vol. 7, no. 1, pp. 1–6, Sep. 2021, doi: 10.1038/s41524-021-00608-3. Available: https://www.nature.com/articles/s41524-021-00608-3
[60]
J. K. Nangoi, S. Karkare, R. Sundararaman, H. A. Padmore, and T. A. Arias, “Importance of bulk excitations and coherent electron-photon-phonon scattering in photoemission from PbTe(111): Ab initio theory with experimental comparisons,” Physical Review B, vol. 104, no. 115132, Sep. 2021, doi: 10.1103/physrevb.104.115132. Available: https://arxiv.org/abs/2006.11924
[61]
J. Lim, A. C. Hire, Y. Quan, J. S. Kim, S. R. Xie, R. S. Kumar, D. Popov, C. Park, R. J. Hemley, J. J. Hamlin, R. G. Hennig, P. J. Hirschfeld, and G. R. Stewart, “Creating superconductivity in WB2 through pressure-induced metastable planar defects,” arXiv:2109.11521 [cond-mat], Sep. 2021, doi: 10.48550/arXiv.2109.11521. Available: http://arxiv.org/abs/2109.11521
[62]
R. Roussel, J. P. Gonzalez-Aguilera, Y.-K. Kim, E. Wisniewski, W. Liu, P. Piot, J. Power, A. Hanuka, and A. Edelen, “Turn-Key Constrained Parameter Space Exploration for Particle Accelerators Using Bayesian Active Learning,” Nature Communications, vol. 12, p. 5612, Sep. 2021, doi: 10.1038/s41467-021-25757-3. Available: https://doi.org/10.1038/s41467-021-25757-3
[63]
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto, “An adaptive approach to machine learning for compact particle accelerators,” Sci Rep, vol. 11, no. 1, p. 19187, Sep. 2021, doi: 10.1038/s41598-021-98785-0. Available: https://www.nature.com/articles/s41598-021-98785-0
[64]
G. Ha, K.-J. Kim, P. Piot, J. G. Power, and Y. Sun, “Bunch Shaping in Electron Linear Accelerators,” Reviews of Modern Physics, Oct. 2021, doi: 10.48550/arXiv.2111.00520. Available: http://arxiv.org/abs/2111.00520
[65]
C. Pennington, “Testing Alkali Antimonide Photocathodes in High Gradient Injectors,” presented at the Photocathode Physics for Photoinjectors, SLAC, Menlo Park, CA, Nov. 2021. Available: https://conf.slac.stanford.edu/photocathode-physics-photoinjectors-2021/agenda
[66]
R. G. Farber, S. A. Willson, and S. J. Sibener, “Role of nanoscale surface defects on Sn adsorption and diffusion behavior on oxidized Nb(100),” Journal of Vacuum Science & Technology A, vol. 39, no. 6, p. 063212, Dec. 2021, doi: 10.1116/6.0001374. Available: https://avs.scitation.org/doi/10.1116/6.0001374
[67]
A. Romanov, J. Santucci, G. Stancari, A. Valishev, and N. Kuklev, “Experimental 3-dimensional tracking of the dynamics of a single electron in the Fermilab Integrable Optics Test Accelerator (IOTA),” J. Inst., vol. 16, no. 12, p. P12009, Dec. 2021, doi: 10.1088/1748-0221/16/12/P12009. Available: https://dx.doi.org/10.1088/1748-0221/16/12/P12009. [Accessed: May 02, 2024]

2020

[1]
R. D. Veit, R. G. Farber, N. S. Sitaraman, T. A. A. Arias, and S. J. Sibener, “Suppression of Nano-Hydride Growth on Nb(100) Due to Nitrogen Doping,” Journal of Chemical Physics, vol. 152, no. 21, p. 214703, 2020, doi: 10.1063/5.0007042. Available: http://aip.scitation.org/doi/10.1063/5.0007042
[2]
L. Cultrera, A. Galdi, J. K. Bae, F. Ikponmwen, J. Maxson, and I. Bazarov, “Long lifetime polarized electron beam production from negative electron affinity GaAs activated with Sb-Cs-O: Trade-offs between efficiency, spin polarization, and lifetime,” Physical Review Accelerators and Beams, vol. 23, no. 2, Feb. 2020, doi: 10.1103/PhysRevAccelBeams.23.023401. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.023401
[3]
C. T. Parzyck, B. D. Faeth, G. N. Tam, G. R. Stewart, and K. M. Shen, “Enhanced surface superconductivity in Ba(Fe 0.95 Co 0.05 ) 2 As 2,” Applied Physics Letters, vol. 116, no. 6, p. 062601, Feb. 2020, doi: 10.1063/1.5133647. Available: http://aip.scitation.org/doi/10.1063/1.5133647
[4]
A. R. Pack, J. Carlson, S. Wadsworth, and M. K. Transtrum, “Role of surface defects and material inhomogeneities for vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory in 2 and 3 dimensions,” Phys. Rev. B, vol. In press., Feb. 2020, Available: http://arxiv.org/abs/1911.02132
[5]
N. Stilin, A. Holic, M. Liepe, R. Porter, and J. Sears, “Stable CW Operation of Nb3Sn SRF Cavity at 10 MV/m using Conduction Cooling,” arXiv:2002.11755 [physics], Feb. 2020, doi: 10.48550/arXiv.2002.11755. Available: http://arxiv.org/abs/2002.11755
[6]
P. Denham, F. Cropp, and P. Musumeci, “Analysis of Skew Quadrupole Compensation in RF-Photoinjectors,” arXiv:2003.00049 [physics], Feb. 2020, doi: /10.48550/arXiv.2003.00049. Available: http://arxiv.org/abs/2003.00049
[7]
C. Hansel, W. An, W. Mori, and J. B. Rosenzweig, “Nonlinear equilibria and emittance growth in plasma wakefield accelerators with ion motion,” arXiv:2003.12062 [physics], Mar. 2020, doi: 10.48550/arXiv.2003.12062. Available: http://arxiv.org/abs/2003.12062
[8]
J. K. Bae, A. Galdi, L. Cultrera, F. Ikponmwen, J. Maxson, and I. Bazarov, “Improved lifetime of a high spin polarization superlattice photocathode,” Journal of Applied Physics, vol. 127, no. 12, p. 124901, Mar. 2020, doi: 10.1063/1.5139674. Available: http://aip.scitation.org/doi/10.1063/1.5139674
[9]
J. Lee, Z. Mao, K. He, Z. H. Sung, T. Spina, S.-I. Baik, D. L. Hall, M. Liepe, D. N. Seidman, and S. Posen, “Grain-boundary structure and segregation in Nb3Sn coatings on Nb for high-performance superconducting radiofrequency cavity applications,” Acta Materialia, vol. 188, pp. 155–165, Apr. 2020, doi: 10.1016/j.actamat.2020.01.055. Available: https://linkinghub.elsevier.com/retrieve/pii/S135964542030080X
[10]
J. B. Rosenzweig, “Ultra-compact X-ray FEL Based on Advanced Cryogenic RF Techniques,” in Proceedings of the APS Virtual April 2020 Meeting, Virtual, Apr. 2020. Available: https://aps-april.onlineeventpro.freeman.com/speakers/rosen~physics.ucla.edu/James-Rosenzweig
[11]
A. R. Pack, J. Carlson, S. Wadsworth, and M. K. Transtrum, “Vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory in two and three dimensions: Role of surface defects and material inhomogeneities,” Physical Review B, vol. 101, no. 14, Apr. 2020, doi: 10.1103/PhysRevB.101.144504. Available: https://link.aps.org/doi/10.1103/PhysRevB.101.144504
[12]
J. N. Nelson, C. T. Parzyck, B. D. Faeth, J. K. Kawasaki, D. G. Schlom, and K. M. Shen, “Mott gap collapse in lightly hole-doped Sr2−xKxIrO4,” Nature Communications, vol. 11, no. 1, May 2020, doi: 10.1038/s41467-020-16425-z. Available: http://www.nature.com/articles/s41467-020-16425-z
[13]
E. Padgett, M. E. Holtz, P. Cueva, Y.-T. Shao, E. Langenberg, D. G. Schlom, and D. A. Muller, “The exit-wave power-cepstrum transform for scanning nanobeam electron diffraction: robust strain mapping at subnanometer resolution and subpicometer precision,” Ultramicroscopy, vol. 214, p. 112994, Jul. 2020, doi: 10.1016/j.ultramic.2020.112994. Available: https://linkinghub.elsevier.com/retrieve/pii/S0304399119303377
[14]
C. J. R. Duncan, D. A. Muller, and J. M. Maxson, “Lossless Monochromation for Electron Microscopy with Pulsed Photoemission Sources and Radio-Frequency Cavities,” Physical Review Applied, vol. 14, no. 1, Jul. 2020, doi: 10.1103/PhysRevApplied.14.014060. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.14.014060
[15]
C. M. Pierce, M. B. Andorf, E. Lu, C. Gulliford, I. V. Bazarov, J. M. Maxson, M. Gordon, Y.-K. Kim, N. P. Norvell, B. M. Dunham, and T. O. Raubenheimer, “Low intrinsic emittance in modern photoinjector brightness,” Phys. Rev. Accel. Beams, vol. 23, no. 7, p. 070101, Jul. 2020, doi: 10.1103/PhysRevAccelBeams.23.070101. Available: http://arxiv.org/abs/2004.08034
[16]
S. Karkare, G. Adhikari, W. A. Schroeder, J. K. Nangoi, T. Arias, J. Maxson, and H. Padmore, “Ultracold electrons via Near-Threshold Photoemission from Single-Crystal Cu(100),” Phys. Rev. Lett., vol. 125, no. 5, p. 054801, Jul. 2020, doi: 10.1103/PhysRevLett.125.054801. Available: https://arXiv.org/abs/2002.11579
[17]
M. B. Andorf, V. A. Lebedev, and P. Piot, “Single-pass Cr:ZnSe amplifier for broadband infrared undulator radiation,” Opt. Express, OE, vol. 28, no. 18, pp. 26601–26611, Aug. 2020, doi: 10.1364/OE.396431. Available: https://opg.optica.org/oe/abstract.cfm?uri=oe-28-18-26601
[18]
A. A. McMillan, J. D. Graham, S. A. Willson, R. G. Farber, C. J. Thompson, and S. J. Sibener, “Persistence of the Nb(100) surface oxide reconstruction at elevated temperatures,” Supercond. Sci. Technol., vol. 33, no. 10, p. 105012, Sep. 2020, doi: 10.1088/1361-6668/abaec0. Available: https://doi.org/10.1088/1361-6668/abaec0
[19]
J. B. Rosenzweig, N. Majernik, R. R. Robles, G. Andonian, O. Camacho, A. Fukasawa, A. Kogar, G. Lawler, J. Miao, P. Musumeci, B. Naranjo, Y. Sakai, R. Candler, B. Pound, C. Pellegrini, C. Emma, A. Halavanau, J. Hastings, Z. Li, M. Nasr, S. Tantawi, P. Anisimov, B. Carlsten, F. Krawczyk, E. Simakov, L. Faillace, M. Ferrario, B. Spataro, S. Karkare, J. Maxson, Y. Ma, J. Wurtele, A. Murokh, A. Zholents, A. Cianchi, D. Cocco, and S. B. Van Der Geer, “An ultra-compact x-ray free-electron laser,” New J. Phys., vol. 22, no. 9, p. 093067, Sep. 2020, doi: 10.1088/1367-2630/abb16c. Available: http://arxiv.org/abs/2003.06083. [Accessed: Jun. 12, 2023]
[20]
M. B. Andorf, W. F. Bergan, I. V. Bazarov, J. M. Maxson, V. Khachatryan, D. L. Rubin, and S. T. Wang, “Optical stochastic cooling with an arc bypass in the Cornell Electron Storage Ring,” Phys. Rev. Accel. Beams, vol. 23, no. 10, p. 102801, Oct. 2020, doi: 10.1103/PhysRevAccelBeams.23.102801. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.102801
[21]
A. Galdi, W. J. I. DeBenedetti, J. Balajka, L. Cultrera, I. V. Bazarov, J. M. Maxson, and M. A. Hines, “The effects of oxygen-induced phase segregation on the interfacial electronic structure and quantum efficiency of Cs3Sb photocathodes,” The Journal of Chemical Physics, vol. 153, no. 14, p. 144705, Oct. 2020, doi: 10.1063/5.0024020. Available: http://aip.scitation.org/doi/10.1063/5.0024020
[22]
Liepe, M, “Compact Superconducting RF Electron Accelerating Systems,” in Bulletin of the American Physical Society, American Physical Society, Oct. 2020. Available: https://meetings.aps.org/Meeting/DNP20/Session/LA.2
[23]
Ryan Porter, “Growth Studies and Optimization of Nb3Sn Coatings,” presented at the International Workshop on Nb3Sn (Nb3SnSRF ’20), Cornell University, Ithaca, NY, Nov. 10, 2020. Available: https://indico.classe.cornell.edu/event/1806/contributions/1470/
[24]
S. A. Willson, “Deconvoluting Initial Nb-Sn-O Interactions: Spatially Resolved Electronic Characterization of Sn Reconstructions on (3×1)-O Nb(100),” presented at the International Workshop on Nb3Sn (Nb3SnSRF ’20), Cornell University, Ithaca, NY, Nov. 10, 2020. Available: https://indico.classe.cornell.edu/event/1806/contributions/1487/

2019

[1]
S. Baturin, T. Nikhar, and S. Baryshev, “Field electron emission induced glow discharge in nanodiamond vacuum diode,” J. Phys. D: Appl. Phys., 2019, doi: 10.1088/1361-6463/ab2183. Available: http://iopscience.iop.org/10.1088/1361-6463/ab2183
[2]
F. (Eric) Cropp V, N. Burger, P. Denham, A. Edelen, C. Emma, J. Giner Navarro, E. Liu, P. Musumeci, and L. Phillips, “Maximizing 2-D Beam Brightness Using the Round to Flat Beam Transformation in the Ultralow Charge Regime,” Proceedings of the North American Particle Accelerator Conference, vol. NAPAC2019, p. 4 pages, 0.649 MB, 2019, doi: 10.18429/JACOW-NAPAC2019-FRXBA4. Available: http://jacow.org/napac2019/doi/JACoW-NAPAC2019-FRXBA4.html
[3]
R. G. Farber, R. D. Veit, N. S. Sitaraman, T. A. Arias, and S. J. Sibener, “Nano-Scale Characterization of the Growth and Suppression Behavior of Niobium Hydrides for Next Generation Superconducting RF Accelerators and Light Sources,” in Program of the AVS Prairie Chapter Symposium, Champaign, IL, 2019, p. p.27. Available: https://avs.mrl.illinois.edu/files/2019/09/AVSPCSE2019-Program-final.pdf
[4]
M. Gordon, Y.-K. Kim, and J. M. Maxson, “The Effects of Stochastic Space Charge in High Brightness Photoelectron Beamlines for Ultrafast Electron Diffraction,” in Proc. IPAC2019, Melbourne, Australia, 2019. doi: 10.18429/jacow-ipac2019-wepts069. Available: http://jacow.org/ipac2019/doi/JACoW-IPAC2019-WEPTS069.html
[5]
M. Hu, M. Liepe, and R. D. Porter, “Reducing Surface Roughness of Nb3Sn Through Chemical Polishing Treatments,” in Proc. SRF’19, Dresden, Germany: JACOW Publishing, Geneva, Switzerland, 2019. doi: 10.18429/JACoW-SRF2019-MOP013. Available: https://srf2019.vrws.de/papers/mop013.pdf
[6]
J. B. Rosenzweig, A. Cahill, V. Dolgashev, C. Emma, A. Fukasawa, R. Li, C. Limborg, J. Maxson, P. Musumeci, A. Nause, R. Pakter, R. Pompili, R. Roussel, B. Spataro, and S. Tantawi, “Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources,” Phys. Rev. Accel. Beams, vol. 22, no. 2, p. 023403, Feb. 2019, doi: 10.1103/PhysRevAccelBeams.22.023403. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.023403
[7]
C. B. Clement, M. Bierbaum, and J. Sethna, “Image registration and super resolution from first principles,” arXiv:1809.05583 [physics], Feb. 2019, doi: https://doi.org/10.48550/arXiv.1809.05583. Available: https://arxiv.org/pdf/1809.05583.pdf
[8]
J. K. Nangoi, “Ab initio theory and calculations of many-body effects in photoemission from semiconductor surfaces: Cs3Sb as a case study,” presented at the APS March Meeting, Boston, MA, Mar. 04, 2019. Available: https://meetings.aps.org/Meeting/MAR19/Session/P33.7
[9]
N. Kuklev, Y.-K. Kim, J. Jarvis, A. L. Romanov, J. K. Santucci, and G. Stancari, “Synchrotron Radiation Beam Diagnostics at IOTA-Commissioning Performance and Upgrade Efforts,” in Proc. of IPAC2019, Melbourne, Australia, May 2019. doi: 10.18429/JACoW-IPAC2019-WEPGW103. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/wepgw103.pdf
[10]
N. Kuklev, Y.-K. Kim, S. Nagaitsev, A. Romanov, and A. Valishev, “Experimental Demonstration of the Henon-Heiles Quasi-Integrable System of IOTA,” in Proc. IPAC2019, Melbourne, Australia, May 2019. doi: 10.18429/JACoW-IPAC2019-MOPGW113. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/mopgw113.pdf
[11]
J. T. Maniscalco, M. Liepe, T. A. Arias, D. B. Liarte, J. P. Sethna, and N. Sitaraman, “Theoretical Analysis of Quasiparticle Overheating, Positive Q-Slope, and Vortex Losses in SRF Cavities,” in Proc. IPAC2019, Melbourne, Australia, May 2019. doi: 10.18429/JACoW-IPAC2019-WEPRB089. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/weprb089.pdf
[12]
S. Karkare, J. Feng, J. Maxson, and H. A. Padmore, “Development of a 3-D energy-momentum analyzer for meV-scale energy electrons,” Rev. of Sci. Instr., vol. 90, no. 5, p. 053902, May 2019, doi: 10.1063/1.5091683. Available: https://aip.scitation.org/doi/10.1063/1.5091683
[13]
D. H. Koh and S. S. Baturin, “Analytic model of 3D beam dynamics in a wakefield device,” NIM A, vol. 925, pp. 128–132, May 2019, doi: 10.1016/j.nima.2019.02.016. Available: http://www.sciencedirect.com/science/article/pii/S0168900219301913
[14]
W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, D. B. Liarte, D. L. Rubin, and J. P. Sethna, “Online storage ring optimization using dimension-reduction and genetic algorithms,” Phys. Rev. Accel. Beams, vol. 22, no. 5, p. 054601, May 2019, doi: 10.1103/PhysRevAccelBeams.22.054601. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.054601
[15]
W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, and D. L. Rubin, “Applications of Dimension-Reduction to Various Accelerator Physics Problems,” in Proc. IPAC2019, Melbourne, Australia, May 2019. doi: 10.18429/JACoW-IPAC2019-THPRB099. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/thprb099.pdf
[16]
L. Gupta, S. Baturin, S. Nagaitsev, and Y.-K. Kim, “Study of Integrable and Quasi-Integrable Sextupole Lattice,” Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-MOPGW107. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/mopgw107.pdf
[17]
M. Liepe, “Superconducting RF for the Future: Is Nb3Sn Ready for Next-generation Accelerators?,” in Proc. IPAC2019, M. Boland, H. Tanaka, D. Button, R. Dowd, V. R. W. Schaa, and E. Tan, Eds., in 10. Melbourne, Australia, May 2019. Available: https://accelconf.web.cern.ch/ipac2019/talks/tuxplm1_talk.pdf
[18]
F. H. Ji, D. Durham, A. Minor, P. Musumeci, J. Navarro, and D. Filippetto, “Ultrafast Relativistic Electron Nanoprobes,” Nat. Commun., vol. 2, no. 1, p. 54, May 2019, doi: 10.1038/s42005-019-0154-4. Available: https://www.nature.com/articles/s42005-019-0154-4
[19]
S. Keckert, T. Buck, D. Hall, J. Knobloch, P. Kolb, O. Kugeler, R. Laxdal, M. Liepe, S. Posen, T. Prokscha, Z. Salman, A. Suter, and T. Junginger, “Critical Fields of Nb3Sn Prepared for Superconducting Cavities,” Supercond. Sci. Technol., vol. 32, no. 7, p. 075004, May 2019, doi: 10.1088/1361-6668/ab119e. Available: https://doi.org/10.1088/1361-6668/ab119e
[20]
O. Chubenko, S. S. Baturin, and S. V. Baryshev, “Theoretical evaluation of electronic density-of-states and transport effects on field emission from n-type ultrananocrystalline diamond films,” Journal of Applied Physics, vol. 125, no. 20, p. 205303, May 2019, doi: 10.1063/1.5085679. Available: https://aip.scitation.org/doi/10.1063/1.5085679
[21]
J. T. Maniscalco, T. Gruber, A. T. Holic, and M. Liepe, “Progress Towards Commissioning the Cornell DC Field Dependence Cavity,” in Proc. of SRF’19, Dresden, Germany, Jun. 2019. doi: doi:10.18429/JACoW-SRF2019-TUP051. Available: http://accelconf.web.cern.ch/AccelConf/srf2019/papers/tup051.pdf
[22]
J. Maniscalco, M. Ge, P. N. Koufalis, M. Liepe, T. A. Arias, D. B. Liarte, J. P. Sethna, and N. Sitaraman, “The Field-Dependent Surface Resistance of Doped Niobium: New Experimental and Theoretical Results,” in Proc. SRF’19, Jun. 2019. doi: doi:10.18429/JACoW-SRF2019-TUFUA1. Available: http://accelconf.web.cern.ch/AccelConf/srf2019/papers/tufua1.pdf
[23]
N. Sitaraman, T. A. Arias, R. G. Farber, M. Liepe, J. Maniscalco, S. J. Sibener, and R. D. Veit, “Ab Initio Calculations on Impurity Doped Niobium and Niobium Surfaces,” in Proc. SRF’19, Dresden, Germany, Jun. 2019. doi: 10.18429/JACoW-SRF2019-TUP045
[24]
Z. Sun, M. Liepe, T. Oseroff, R. Porter, T. A. Arias, N. Sitamaran, K. Dobson, X. Deng, A. Connolly, J. Scholtz, and M. Thompson, “Electroplating of Sn film on Nb substrate for generating Nb3Sn thin films and post laser annealing,” in Proc. SRF’19, Dresden, Germany, Jun. 2019. doi: 10.18429/JACoW-SRF2019-MOP014
[25]
J. Maniscalco, “Nitrogen doping, nitrogen infusion, and niobium-3 tin: recent challenges and advances in fundamental SRF accelerator physics,” Joint Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC-ICMC), Hartford, CT, Jul. 2019.
[26]
A. Galdi, C. M. Pierce, L. Cultrera, G. Adhikari, W. A. Schroeder, H. Paik, D. G. Schlom, J. K. Nangoi, T. A. Arias, E. Lochocki, C. Parzyck, K. M. Shen, J. M. Maxson, and I. V. Bazarov, “Low energy photoemission from (100) Ba1−xLaxSnO3 thin films for photocathode applications,” Eur. Phys. J. Spec. Top., vol. 228, no. 3, pp. 713–718, Jul. 2019, doi: 10.1140/epjst/e2019-800175-x. Available: https://doi.org/10.1140/epjst/e2019-800175-x
[27]
C. Duncan, M. B. Andorf, V. Khachatryan, C. Gulliford, J. Maxson, D. Rubin, and I. Bazarov, “A Generic Software Platform For Rapid Prototyping of Online Cotnrol Algorithms,” Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia, Jul. 2019, doi: 10.18429/JACoW-IPAC2019-THPRB100. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/thprb100.pdf
[28]
S. N. Lobo, M. Liepe, and T. E. Oseroff, “Magnetic Field Mapping System for Cornell Sample Host Cavity,” in Proceedings of SRF’19, Dresden, Germany: JACOW Publishing, Geneva, Switzerland, Jul. 2019. doi: 10.18429/JACoW-SRF2019-THP046
[29]
T. E. Oseroff and M. Liepe, “Improvements  to  the  Cornell Sample  Host  System,” in Proc. SRF’19, Dresden, Germany: JACOW Publishing, Geneva, Switzerland, Jul. 2019. doi: 10.18429/JACoW-SRF2019-THP045
[30]
T. E. Oseroff, M. Liepe, B. Moeckly, M. Sowa, and Z. Sun, “RF Characterization of Novel Superconducting Materials and Multilayers,” in Proc. SRF’19, Dresden, Germany, Jul. 2019. doi: 10.18429/JACoW-SRF2019-THP044. Available: https://srf2019.vrws.de/papers/thp044.pdf
[31]
P. Cueva, E. Padget, and D. A. Muller, “Sub-nm Resolution, Sub-pm Precision Structure Mapping Robust to Thickness and Tilt Variations by Cepstral Analysis of Scanning Nanodiffraction 4D-STEM,” Microsc. Microanal., vol. 25, no. S2, p. 1934, Aug. 2019, doi: 10.1017/S1431927619010407. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/subnm-resolution-subpm-precision-structure-mapping-robust-to-thickness-and-tilt-variations-by-cepstral-analysis-of-scanning-nanodiffraction-4dstem/CCB5F9C8DA602648803DDCD4BED06778
[32]
F.-H. Ji, J. Giner Navarro, P. Musumeci, D. Durham, A. Minor, and D. Filippetto, “Knife-edge based measurement of the 4D transverse phase space of electron beams with picometer-scale emittance,” Phys. Rev. Accel. Beams, vol. 22, p. 082801, Aug. 2019, doi: 10.1103/PhysRevAccelBeams.22.082801. Available: https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.22.082801
[33]
A. J. Dick, P. Piot, and M. B. Andorf, “Progress Toward a Laser Amplifier for Optical Stochastic Cooling,” in Proc. NAPAC’19, in Beam Dynamics and EM Fields. Lansing, MI, Sep. 2019. Available: https://napac2019.vrws.de/papers/tuplm26.pdf
[34]
G. S. Gevorkyan, S. Karkare, I. V. Bazarov, L. Cultrera, A. Galdi, W. H. Li, and J. M. Maxson, “Design of a 200 kV DC Cryocooled Photoemission Gun for Photocathode Investigations,” in Proc. NAPAC’19, Sep. 2019. Available: https://napac2019.vrws.de/papers/moplm16.pdf
[35]
W. H. Li, M. B. Andorf, I. V. Bazarov, L. Cultrera, C. J. R. Duncan, A. Galdi, J. M. Maxson, and C. A. Pennington, “Ultrafast Nonlinear Photoemission from Alkali Antimonide Photocathodes,” in Proc. NAPAC’19, Lansing, MI, Sep. 2019. Available: https://napac2019.vrws.de/papers/moplh14.pdf
[36]
R. D. Porter, H. Hu, M. Liepe, J. Tao, N. Stilin, and Z. Sun, “Progress in Nb3Sn SRF Cavities at Cornell University,” in Proc. NAPAC’19, Lansing, MI, Sep. 2019. Available: https://napac2019.vrws.de/papers/moybb3.pdf
[37]
Z. Sun, M. Liepe, J. Maniscalco, T. Oseroff, R. Porter, D. Zhang, and X. Deng, “Fast Sn-ion transport on Nb surface for generating NbxSn thin films and XPS depth profiling,” in Proc. NAPAC’19, Lansing, MI, Sep. 2019. Available: https://napac2019.vrws.de/papers/weplm60.pdf
[38]
A. Romanov, D. R. Broemmelsiek, K. Carlson, D. J. Crawford, N. Eddy, D. R. Edstrom, J. Jarvis, V. Lebedev, S. Nagaitsev, J. Ruan, J. K. Santucci, V. Shiltsev, G. Stancari, A. Valishev, A. Warner, Y.-K. Kim, N. Kuklev, I. Lobach, S. Chattopadhyay, and S. Szustkowki, “RECENT RESULTS AND OPPORTUNITIES AT THE IOTA FACILITY,” in Proceedings of the 9th International Beam Instrumentation Conf., Malmo, Sweden, Sep. 2019. Available: https://www.osti.gov/biblio/1614724
[39]
N. Majernik and J. B. Rosenzweig, “Halbach undulators using right triangular magnets,” Phys. Rev. Accel. Beams, vol. 22, no. 9, p. 092401, Sep. 2019, doi: 10.1103/PhysRevAccelBeams.22.092401. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.092401
[40]
R. Robles and J. Rosenzweig, “Compression of Ultra-High Brightness Beams for a Compact X-ray Free-Electron Laser,” Instruments, vol. 3, no. 4, p. 53, Oct. 2019, doi: 10.3390/instruments3040053. Available: https://www.mdpi.com/2410-390X/3/4/53
[41]
R. D. Veit, N. A. Kautz, R. G. Farber, and S. J. Sibener, “Oxygen dissolution and surface oxide reconstructions on Nb(100),” Surf. Sci., vol. 688, pp. 63–68, Oct. 2019, doi: 10.1016/j.susc.2019.06.004. Available: http://www.sciencedirect.com/science/article/pii/S0039602819303589
[42]
Y.-K. Kim, “Program at the center for bright beams to recruit and train the next generation of scientists in accelerator and related fields,” AIP Conference Proceedings, vol. 2160, no. 1, p. 040008, Oct. 2019, doi: 10.1063/1.5127688. Available: https://aip.scitation.org/doi/abs/10.1063/1.5127688
[43]
A. Pack and M. Transtrum, “Numerical Calculations of the Superconducting Superheating Field within Eilenberger Theory,” in Bull. of the Am. Phys. Soc., Prescott, Arizona: Am. Phys. Soc., Oct. 2019. Available: http://meetings.aps.org/Meeting/4CS19/Session/B05.2
[44]
J. Rosenzweig, “Towards an ultra-compact x-ray free-electron laser (Conference Presentation),” in Advances in Laboratory-based X-Ray Sources, Optics, and Applications VII, International Society for Optics and Photonics, Oct. 2019, p. 1111006. doi: 10.1117/12.2531143. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11110/1111006/Towards-an-ultra-compact-x-ray-free-electron-laser-Conference/10.1117/12.2531143.short
[45]
S. R. Xie, G. R. Stewart, J. J. Hamlin, P. J. Hirschfeld, and R. G. Hennig, “Functional form of the superconducting critical temperature from machine learning,” Phys. Rev. B, vol. 100, no. 17, p. 174513, Nov. 2019, doi: 10.1103/PhysRevB.100.174513. Available: https://link.aps.org/doi/10.1103/PhysRevB.100.174513
[46]
G. Lawler, K. Sanwalka, Y. Zhuang, V. Yu, T. Paschen, R. Robles, O. Williams, Y. Sakai, B. Naranjo, and J. Rosenzweig, “Electron Diagnostics for Extreme High Brightness Nano-Blade Field Emission Cathodes,” Instruments, vol. 3, no. 4, p. 57, Dec. 2019, doi: 10.3390/instruments3040057. Available: https://www.mdpi.com/2410-390X/3/4/57
[47]
N. Majernik and J. Rosenzweig, “Design of Comb Fabricated Halbach Undulators,” Instruments, vol. 3, no. 4, p. 58, Dec. 2019, doi: 10.3390/instruments3040058. Available: https://www.mdpi.com/2410-390X/3/4/58
[48]
J. Mann, G. Lawler, and J. Rosenzweig, “1D Quantum Simulations of Electron Rescattering with Metallic Nanoblades,” Instruments, vol. 3, no. 4, p. 59, Dec. 2019, doi: 10.3390/instruments3040059. Available: https://www.mdpi.com/2410-390X/3/4/59
[49]
A. M. Minor, P. Denes, and D. A. Muller, “Cryogenic electron microscopy for quantum science,” MRS Bull., vol. 44, no. 12, pp. 961–966, Dec. 2019, doi: 10.1557/mrs.2019.288. Available: https://doi.org/10.1557/mrs.2019.288

2018

[1]
J. K. Bae, I. Bazarov, L. Cultrera, S. Karkare, J. Maxson, P. Musumeci, H. Padmore, and X. Shen, “Multi-photon Photoemission and Ultrafast Electron Heating in Cu Photocathodes at Threshold,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupml026. Available: https://doi.org/10.18429/jacow-ipac2018-tupml026
[2]
N. Bell and L. Phillips, “Generation of Flat Ultra-Low Emittance Beams,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpak072. Available: https://doi.org/10.18429/jacow-ipac2018-thpak072
[3]
L. Cultrera, J. Bae, A. C. Bartnik, I. V. Bazarov, R. Doane, A. Galdi, C. M. Gulliford, W. H. Li, J. M. Maxson, S. A. McBride, T. P. Moore, C. M. Pierce, C. Xu, and C. University, “Photocathodes R&D for High Brightness and Highly Polarized Electron Beams at Cornell University,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/JACoW-IPAC2018-TUPML028. Available: https://doi.org/10.18429/JACoW-IPAC2018-TUPML028
[4]
A. Galdi, G. Adhikari, I. Bazarov, L. Cultrera, W. Li, E. Lochocki, J. Maxson, H. Paik, C. Parzyck, C. Pierce, D. Schlom, A. Schroeder, and K. Shen, “Barium Tin Oxide Ordered Photocathodes: First Measurements and Future Perspectives,” in Proc. 9th Int. Particle Accel. Conf., IPAC2018, Satogata, Todd (Ed.) and Schaa, Volker RW (Ed.), Eds., Vancouver, Canada, 2018. doi: 10.18429/jacow-ipac2018-tupml027. Available: https://doi.org/10.18429/jacow-ipac2018-tupml027
[5]
J. Giner Navarro, R. Assmann, D. Cesar, B. Marchetti, D. Marx, and P. Musumeci, “Electron Microscopy Inspired Setup for Single-Shot 4-D Trace Space Reconstruction of Bright Electron Beams,” in Proc. IPAC2018, Satogata, T. and V. R. W. Schaa, Eds., Vancouver, Canada, 2018. doi: 10.18429/jacow-ipac2018-thpml106. Available: https://doi.org/10.18429/jacow-ipac2018-thpml106
[6]
L. Gupta, S. Baturin, M. Ehrlichman, Y.-K. Kim, J. Maxson, R. Meller, D. Rubin, D. Sagan, and J. Shanks, “Beam-Based Sextupolar Nonlinearity Mapping in CESR,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpak137. Available: https://doi.org/10.18429/jacow-ipac2018-thpak137
[7]
S. Karkare, I. Bazarov, S. Emamian, A. Galdi, G. Gevorkyan, H. Padmore, and A. Schmid, “Physical and Chemical Roughness of Alkali-Animonide Cathodes,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpmf080. Available: https://doi.org/10.18429/jacow-ipac2018-thpmf080
[8]
W. Li, I. Bazarov, C. Gulliford, and J. Maxson, “Novel Photocathode Geometry Optimization: Field Enhancing Photoemission Tips,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, p. TUPML029, 2018, doi: 10.18429/jacow-ipac2018-tupml029. Available: https://doi.org/10.18429/jacow-ipac2018-tupml029
[9]
J. Maniscalco, P. Koufalis, and M. Liepe, “Modeling of the Frequency and Field Dependence of the Surface Resistance of Impurity-Doped Niobium,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf046. Available: https://doi.org/10.18429/JACoW-IPAC2018-WEPMF046
[10]
J. Maniscalco and M. Liepe, “A Computational Method for More Accurate Measurements of the Surface Resistance in SRF Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf042. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf042
[11]
J. Maniscalco and M. Liepe, “Updates on the DC Field Dependence Cavity,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf044. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf044
[12]
J. K. Nangoi, T. A. Arias, S. Karkare, H. Padmore, and A. Schroeder, “The Role of Electron-Phonon Scattering in Transverse Momentum Conservation in PbTe(111) Photocathodes,” in Proc. IPAC2018, Vancouver, BC, Canada, 2018. doi: 10.18429/JACoW-IPAC2018-TUPMF065. Available: https://doi.org/10.18429/JACoW-IPAC2018-TUPMF065
[13]
T. Oseroff, M. Ge, M. Liepe, J. Maniscalco, S. McNeal, R. Porter, and M. Sowa, “Performance of Samples with Novel SRF Materials and Growth Techniques,” in Proc. IPAC2018, T. Satogata and V. R. W. Schaa, Eds., Vancouver, Canada, 2018. doi: 10.18429/jacow-ipac2018-wepmf047. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf047
[14]
J. Paul, I. V. Bazarov, A. Galdi, R. Hennig, S. Karkare, and H. Padmore, “Computational Screening for Low Emittance Photocathodes,” in Proc. IPAC2018, T. Satogata and V. R. W. Schaa, Eds., Vancouver, Canada, 2018. doi: 10.18429/jacow-ipac2018-thpml053. Available: http://accelconf.web.cern.ch/AccelConf/ipac2018/papers/thpml053.pdf
[15]
C. Pierce, S. Baturin, I. Bazarov, M. Gordon, C. Gulliford, Y.-K. Kim, and J. Maxson, “Understanding and Compensating Emittance Diluting Effects in Highly Optimized Ultrafast Electron Diffraction Beamlines,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpaf024. Available: https://doi.org/10.18429/jacow-ipac2018-thpaf024
[16]
R. Porter, T. A. Arias, P. Cueva, J. Ding, D. Hall, M. Liepe, D. A. Muller, and N. Sitaraman, “Update on Nb3Sn Progress at Cornell University,” in Proc. IPAC2018, T. Satogata and V. R. W. Schaa, Eds., Vancouver, BC, Canada, 2018. doi: 10.18429/jacow-ipac2018-wepmf050. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf050
[17]
R. Porter, M. Liepe, J. Maniscalco, and R. Strauss, “Update on Sample Host Cavity Design Work for Measuring Flux Entry and Quench Field,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb044. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB044.html
[18]
A. Zholents, S. Baturin, D. Doran, W. Jansma, M. Kasa, R. Kustom, H. Perez, J. Power, N. Strelnikov, K. Suthar, E. Trakhtenberg, I. Vasserman, G. Waldschmidt, and J. Xu, “A Conceptual Design of a Compact Wakefield Accelerator for a High Repetition Rate Multi User X-ray Free-Electron Laser Facility,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupmf010. Available: https://doi.org/10.18429/jacow-ipac2018-tupmf010
[19]
S. S. Baturin and A. Zholents, “Stability condition for the drive bunch in a collinear wakefield accelerator,” Phys. Rev. Accel. Beams, vol. 21, no. 3, p. 031301, Mar. 2018, doi: 10.1103/PhysRevAccelBeams.21.031301. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.031301
[20]
L. Gupta, S. Baturin, Y.-K. Kim, and S. Nagaitsev, “Design of a One-Dimensional Sextupole Using Semi-Analytic Methods,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, Jun. 2018, doi: 10.18429/JACoW-IPAC2018-THPAF070. Available: http://accelconf.web.cern.ch/AccelConf/ipac2018/doi/JACoW-IPAC2018-THPAF070.html
[21]
A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, Z. Li, S. G. Tantawi, and S. Weathersby, “rf losses in a high gradient cryogenic copper cavity,” Phys. Rev. Accel. Beams, vol. 21, no. 6, p. 061301, Jun. 2018, doi: 10.1103/PhysRevAccelBeams.21.061301. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.061301
[22]
P. Cueva, E. Padget, and D. A. Muller, “A Natural Basis for Unsupervised Machine Learning on Scanning Diffraction Data,” Microsc. Microanal., vol. 24, no. S1, p. 490, Aug. 2018, doi: 10.1017/S1431927618002945. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/natural-basis-for-unsupervised-machine-learning-on-scanning-diffraction-data/2B90D32767DC3A0C7714826758A2FC05
[23]
J. T. Maniscalco, P. N. Koufalis, and M. Liepe, “Fundamental Studies of Impurity Doping in 1.3 GHz And Higher Frequency SRF Cavities,” in Proc. of LINAC2018, Beijing, China, Aug. 2018. doi: doi: 10.18429/JACoW-LINAC2018-TUPO054. Available: http://linac2018.vrws.de/papers/tupo054.pdf
[24]
R. Porter, T. Arias, P. Cueva, D. Hall, M. Liepe, J. Maniscalco, D. Muller, and N. Sitaraman, “Next Generation Nb3Sn SRF Cavities for Linear Accelerators,” Proceedings of the 29th Linear Accelerator Conference, Beijing, China, pp. 462–465, Aug. 2018, doi: 10.18429/JACoW-LINAC2018-TUPO055. Available: http://accelconf.web.cern.ch/AccelConf/linac2018/doi/JACoW-LINAC2018-TUPO055.html
[25]
B. H. Savitzky, I. El Baggari, C. B. Clement, E. Waite, B. H. Goodge, D. J. Baek, J. P. Sheckelton, C. Pasco, H. Nair, N. J. Schreiber, J. Hoffman, A. S. Admasu, J. Kim, S.-W. Cheong, A. Bhattacharya, D. G. Schlom, T. M. McQueen, R. Hovden, and L. F. Kourkoutis, “Image registration of low signal-to-noise cryo-STEM data,” Ultramicroscopy, vol. 191, pp. 56–65, Aug. 2018, doi: 10.1016/j.ultramic.2018.04.008. Available: https://doi.org/10.1016/j.ultramic.2018.04.008
[26]
G. Gevorkyan, S. Karkare, S. Emamian, I. V. Bazarov, and H. A. Padmore, “Effects of physical and chemical surface roughness on the brightness of electron beams from photocathodes,” Phys. Rev. Accel. Beams, vol. 21, no. 9, p. 093401, Sep. 2018, doi: 10.1103/PhysRevAccelBeams.21.093401. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.093401
[27]
S. Karkare, “Less than 10 meV MTE from Cu,” presented at the Physics of Photocathodes for Photoinjectors (P3), Santa Fe, NM, Oct. 2018. Available: https://indico.cern.ch/event/759878/contributions/3151738/
[28]
D. Marx, J. Giner Navarro, D. Cesar, J. Maxson, B. Marchetti, R. Assmann, and P. Musumeci, “Single-shot reconstruction of core 4D phase space of high-brightness electron beams using metal grids,” Phys. Rev. Accel. Beams, vol. 21, no. 10, p. 102802, Oct. 2018, doi: 10.1103/PhysRevAccelBeams.21.102802. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102802
[29]
A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, S. G. Tantawi, and S. Weathersby, “High gradient experiments with X-band cryogenic copper accelerating cavities,” Phys. Rev. Accel. Beams, vol. 21, no. 10, p. 102002, Oct. 2018, doi: 10.1103/PhysRevAccelBeams.21.102002. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102002
[30]
P. Musumeci, J. Giner Navarro, J. B. Rosenzweig, L. Cultrera, I. Bazarov, J. Maxson, S. Karkare, and H. Padmore, “Advances in bright electron sources,” NIM A, vol. 907, p. 209, Nov. 2018, doi: 10.1016/j.nima.2018.03.019. Available: http://www.sciencedirect.com/science/article/pii/S0168900218303541
[31]
J. B. Rosenzweig, A. Cahill, B. Carlsten, G. Castorina, M. Croia, C. Emma, A. Fukusawa, B. Spataro, D. Alesini, V. Dolgashev, M. Ferrario, G. Lawler, R. Li, C. Limborg, J. Maxson, P. Musumeci, R. Pompili, S. Tantawi, and O. Williams, “Ultra-high brightness electron beams from very-high field cryogenic radiofrequency photocathode sources,” NIM A, vol. 909, pp. 224–228, Nov. 2018, doi: 10.1016/j.nima.2018.01.061. Available: http://www.sciencedirect.com/science/article/pii/S0168900218300780
[32]
D. B. Liarte, D. Hall, P. N. Koufalis, A. Miyazaki, A. Senanian, M. Liepe, and J. P. Sethna, “Vortex dynamics and losses due to pinning: Dissipation from trapped magnetic flux in resonant superconducting radio-frequency cavities,” Phys. Rev. Applied, vol. 10, p. 054057, Nov. 2018, doi: 10.1103/PhysRevApplied.10.054057. Available: http://arxiv.org/abs/1808.01293
[33]
A. Bernstein and R. Rand, “Delay-Coupled Mathieu Equations in Synchrotron Dynamics Revisited: Delay Terms in the Slow Flow,” Journal of Applied Nonlinear Dynamics, vol. 7, pp. 349–360, Dec. 2018, doi: 10.5890/JAND.2018.12.003. Available: https://doi.org/10.5890/JAND.2018.12.003
[34]
S. S. Baturin, G. Andonian, and J. B. Rosenzweig, “Analytical treatment of the wakefields driven by transversely shaped beams in a planar slow-wave structure,” Phys. Rev. Accel. Beams, vol. 21, no. 12, p. 121302, Dec. 2018, doi: 10.1103/PhysRevAccelBeams.21.121302. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.121302
[35]
J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H. Padmore, and J. Maxson, “Brightness of femtosecond nonequilibrium photoemission in metallic photocathodes at wavelengths near the photoemission threshold,” Jour. Appl. Phys., vol. 124, no. 24, p. 244903, Dec. 2018, doi: 10.1063/1.5053082. Available: https://aip.scitation.org/doi/10.1063/1.5053082

2017

[1]
J. Ding, D. Hall, and M. Liepe, “Simulations of RF Field-induced Thermal Feedback in Niobium and Nb3Sn Cavities,” in Proc. SRF’17, Lanzhou, China, 2017. doi: 10.18429/JACoW-SRF2017-THPB079. Available: https://doi.org/10.18429/JACoW-SRF2017-THPB079
[2]
D. Hall, T. A. Arias, P. Cueva, D. Liarte, M. Liepe, D. Muller, R. Porter, J. Sethna, and M. Sitaraman, “High Performance Nb3Sn Cavities,” in Proc. SRF’17, V. R. W. Schaa, Ed., Lanzhou, China, 2017. doi: 10.18429/jacow-srf2017-wexa01. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-WEXA01.html
[3]
D. Hall, D. Liarte, M. Liepe, R. Porter, and J. Sethna, “Field-dependence of the Sensitivity to Trapped Flux in Nb3Sn,” in Proc. SRF’17, V. R. W. Schaa, Ed., Lanzhou, China, 2017. doi: 10.18429/jacow-srf2017-thpb042. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB042.html
[4]
D. Hall, P. Cueva, D. Liarte, M. Liepe, D. Muller, R. Porter, and J. Sethna, “Cavity Quench Studies in Nb3Sn Using Temperature Mapping and Surface Analysis of Cavity Cut-outs,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2017, doi: 10.18429/jacow-srf2017-thpb041. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB041.html
[5]
D. B. Liarte, S. Posen, M. K. Transtrum, G. Catelani, M. Liepe, and J. P. Sethna, “Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates,” Supercond. Sci. Technol., vol. 30, no. 3, p. 033002, 2017, doi: 10.1088/1361-6668/30/3/033002. Available: http://stacks.iop.org/0953-2048/30/i=3/a=033002
[6]
D. Liarte, T. Arias, D. Hall, M. Liepe, A. Pack, J. Sethna, N. Sitamaran, and M. Transtrum, “SRF Theory Developments from the Center for Bright Beams,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2017, doi: 10.18429/jacow-srf2017-thpb040. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB040.html
[7]
J. Maniscalco, M. Liepe, and R. Porter, “Design Updates on Cavity to Measure Suppression of Microwave Surface Resistance by DC Magnetic Fields,” in Proc. SRF’17, V. R. W. Schaa, Ed., Lanzhou, China, 2017. doi: 10.18429/jacow-srf2017-thpb005. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB005.html
[8]
T. Oseroff, D. Hall, M. Liepe, and J. Maniscalco, “High-frequency SRF Cavities,” in Proc. of SRF’17, Schaa, Volker RW (Ed.), Ed., Lanzhou, China, 2017. doi: 10.18429/jacow-srf2017-tupb009. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-TUPB009.html
[9]
J. T. Paul, A. K. Singh, Z. Dong, H. Zhuang, B. C. Revard, B. Rijal, M. Ashton, A. Linscheid, M. Blonsky, D. Gluhovic, J Guo, and R. G. Hennig, “Computational methods for 2D materials: discovery, property characterization, and application design,” J. Phys.: Condens. Matter, vol. 29, no. 47, p. 473001, 2017, doi: 10.1088/1361-648X/aa9305. Available: http://stacks.iop.org/0953-8984/29/i=47/a=473001
[10]
R. D. Porter, F. Furuta, D. L. Hall, M. Liepe, J. T. Maniscalco, and C. University, “Effectiveness of Chemical Treatments for Reducing the Surface Roughness of Nb3Sn,” in Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, 2017. doi: 10.18429/JACoW-IPAC2017-MOPVA124. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA124
[11]
R. Porter, F. Furuta, D. Hall, M. Liepe, and J. Maniscalco, “Effects of Chemical Treatments on the Surface Roughess and Surface Magnetic Field Ehancement of Nb3Sn Films for Superconducting Radio-Frequency Cavities,” in Proc. SRF’17, V. R. W. Schaa, Ed., Lanzhou, China, 2017. doi: 10.18429/jacow-srf2017-thpb043. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB043.html
[12]
J. T. Maniscalco, D. Gonnella, and M. Liepe, “The importance of the electron mean free path for superconducting radio-frequency cavities,” Jour. Appl. Phys., vol. 121, no. 4, p. 043910, Jan. 2017, doi: 10.1063/1.4974909. Available: https://aip.scitation.org/doi/full/10.1063/1.4974909
[13]
S. S. Baturin and S. V. Baryshev, “Electron emission projection imager,” Review of Scientific Instruments, vol. 88, no. 3, p. 033701, Mar. 2017, doi: 10.1063/1.4977472. Available: https://aip.scitation.org/doi/full/10.1063/1.4977472
[14]
M. Ashton, J. Paul, S. B. Sinnott, and R. G. Hennig, “Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials,” Phys. Rev. Lett., vol. 118, no. 10, p. 106101, Mar. 2017, doi: 10.1103/PhysRevLett.118.106101. Available: https://link.aps.org/doi/10.1103/PhysRevLett.118.106101
[15]
A. Cahill, V. Dolgashev, J. Rosenzweig, S. Tantawi, and S. Weathersby, “Ultra High Gradient Breakdown Rates in X-Band Cryogenic Normal Conducting Rf Accelerating Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-THPIK125. Available: https://doi.org/10.18429/JACoW-IPAC2017-THPIK125
[16]
A. Cahill, A. Fukasawa, C. Limborg, W. Qin, and J. Rosenzweig, “Optimization of Beam Dynamics for an S-Band Ultra-High Gradient Photoinjector,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-TUPAB129. Available: https://doi.org/10.18429/JACoW-IPAC2017-TUPAB129
[17]
D. Hall, P. Cueva, D. Liarte, M. Liepe, J. Maniscalco, D. Muller, R. Porter, and J. Sethna, “Quench Studies in Single-Cell Nb3Sn Cavities Coated Using Vapour Diffusion,” in Proc. IPAC2017, Copenhagen, Denmark, May 2017. doi: 10.18429/JACoW-IPAC2017-MOPVA116. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA116
[18]
D. Hall, T. Arias, P. Cueva, M. Liepe, J. Maniscalco, D. Muller, R. Porter, and N. Sitaraman, “Surface Analysis of Features Seen on Nb3Sn Sample Coupons Grown by Vapour Diffusion,” in Proc. of IPAC2017, Copenhagen, Denmark, May 2017. doi: 10.18429/JACoW-IPAC2017-MOPVA119. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA119
[19]
D. Hall, D. Liarte, M. Liepe, and J. Sethna, “Impact of Trapped Magnetic Flux and Thermal Gradients on the Performance of Nb3Sn Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA118. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA118
[20]
J. Maniscalco, V. Arrieta, D. Hall, M. Liepe, S. McNeal, R. Porter, and B. Williams, “Cornell Sample Host Cavity: Recent Results,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA123. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA123
[21]
J. Maniscalco, F. Furuta, D. Hall, P. Koufalis, and M. Liepe, “Analysis of Mean Free Path and Field Dependent Surface Resistance,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-WEPVA145. Available: https://doi.org/10.18429/JACoW-IPAC2017-WEPVA145
[22]
R. Porter, M. Liepe, J. Maniscalco, and V. Veshcherevich, “Sample Host Cavity Design for Measuring Flux Entry and Quench,” in Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017. doi: 10.18429/JACoW-IPAC2017-MOPVA126. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA126
[23]
Y. Sakai, I. Gadjev, P. Hoang, N. Majernik, A. Nause, A. Fukasawa, O. Williams, M. Fedurin, B. Malone, C. Swinson, K. Kusche, M. Polyanskiy, M. Babzien, M. Montemagno, Z. Zhong, P. Siddons, I. Pogorelsky, V. Yakimenko, T. Kumita, Y. Kamiya, and J. B. Rosenzweig, “Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime,” Phys. Rev. Accel. Beams, vol. 20, no. 6, p. 060701, Jun. 2017, doi: 10.1103/PhysRevAccelBeams.20.060701. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.060701
[24]
P. Gupta, L. Cultrera, and I. Bazarov, “Monte Carlo simulations of electron photoemission from cesium antimonide,” Journal of Applied Physics, vol. 121, no. 21, p. 215702, Jun. 2017, doi: 10.1063/1.4984263. Available: http://aip.scitation.org/doi/10.1063/1.4984263. [Accessed: Jan. 16, 2018]
[25]
S. Baturin, A. Zinovev, and S. Baryshev, “Vacuum Effect on Field Emission I-V curves,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jun. 2017, doi: 10.1109/IVNC.2017.8051638. Available: https://doi.org/10.1109/IVNC.2017.8051638
[26]
S. S. Baturin and A. Zholents, “Upper limit for the accelerating gradient in the collinear wakefield accelerator as a function of the transformer ratio,” Phys. Rev. Accel. Beams, vol. 20, no. 6, p. 061302, Jun. 2017, doi: 10.1103/PhysRevAccelBeams.20.061302. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.061302
[27]
O. Chubenko, A. Afanasev, S. S. Baturin, and S. V. Baryshev, “Locally resolved field emission area and its effect on resulting j-E characteristics: Case study for planar thin film ultrananocrystalline diamond field emitters,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jul. 2017, doi: 10.1109/IVNC.2017.8051647. Available: https://doi.org/10.1109/IVNC.2017.8051647
[28]
O. Chubenko, S. Baturin, A. Sumant, A. Zinovev, K. K. Kovi, and S. Baryshev, “Field emission microscopy of ultra-nano-crystalline diamond films,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jul. 2017, doi: 10.1109/IVNC.2017.8051543. Available: https://doi.org/10.1109/IVNC.2017.8051543
[29]
A. Raju, S. Choudhury, D. L. Rubin, A. Wilkinson, and J. P. Sethna, “Finding stability domains and escape rates in kicked Hamiltonians,” arXiv:1707.09336 [cond-mat, physics:physics], Jul. 2017, doi: 10.48550/arXiv.1707.09336. Available: http://arxiv.org/abs/1707.09336
[30]
O. Chubenko, S. S. Baturin, K. K. Kovi, A. V. Sumant, and S. V. Baryshev, “Locally Resolved Electron Emission Area and Unified View of Field Emission from Ultrananocrystalline Diamond Films,” ACS Appl Mater Interfaces, vol. 9, no. 38, pp. 33229–33237, Sep. 2017, doi: 10.1021/acsami.7b07062. Available: https://doi.org/10.1021/acsami.7b07062
[31]
S. S. Baturin, A. V. Zinovev, and S. V. Baryshev, “Current Saturation in Nonmetallic Field Emitters,” arXiv:1710.03692 [cond-mat, physics:physics], Oct. 2017, doi: 10.48550/arXiv.1710.03692. Available: http://arxiv.org/abs/1710.03692
[32]
D. A. Dimitrov, G. I. Bell, J. Smedley, I. Ben-Zvi, J. Feng, S. Karkare, and H. A. Padmore, “Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes,” Jour. Appl. Phys., vol. 122, no. 16, p. 165303, Oct. 2017, doi: 10.1063/1.4996568. Available: http://aip.scitation.org/doi/10.1063/1.4996568
[33]
Z. Ding, S. Karkare, J. Feng, D. Filippetto, M. Johnson, S. Virostek, F. Sannibale, J. Nasiatka, M. Gaowei, J. Sihsheimer, E. Muller, J. Smedley, and H. Padmore, “Temperature-dependent quantum efficiency degradation of K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method,” Phys. Rev. Accel. Beams, vol. 20, no. 11, p. 113401, Nov. 2017, doi: 10.1103/PhysRevAccelBeams.20.113401. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.113401

2016 Pre-award Publications

[1]
D. B. Liarte, M. K. Transtrum, and J. P. Sethna, “Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors,” Phys. Rev. B, vol. 94, no. 14, p. 144504, Oct. 2016, doi: 10.1103/PhysRevB.94.144504. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.94.144504