Publications
Publications by Year
2022
[1]
N. S. Sitaraman, Z. Sun, B. Francis, A. C. Hire, T.
Oseroff, Z. Baraissov, T. A. Arias, R. Hennig, M. U. Liepe, D. A. Muller, and M. K. Transtrum, “Theory of Nb-Zr
Alloy Superconductivity and First Experimental Demonstration for Superconducting Radio-Frequency Cavity
Applications,” Aug. 2022, doi: 10.48550/arXiv.2208.10678.
[Online]. Available: http://arxiv.org/abs/2208.10678
[2]
J. Jarvis, V. Lebedev, A. Romanov, D. Broemmelsiek,
K. Carlson, S. Chattopadhyay, A. Dick, D. Edstrom, I. Lobach, S. Nagaitsev, H. Piekarz, P. Piot, J. Ruan, J.
Santucci, G. Stancari, and A. Valishev, “Experimental demonstration of optical stochastic cooling,”
Nature, vol. 608, no. 7922, pp. 287–292, Aug. 2022, doi: 10.1038/s41586-022-04969-7. [Online]. Available: https://www.nature.com/articles/s41586-022-04969-7
[3]
F. Bosco, O. Camacho, M. Carillo, E. Chiadroni, L.
Faillace, A. Fukasawa, A. Giribono, L. Giuliano, N. Najernik, A. Mostacci, L. Palumbo, B. Spataro, C.
Vaccarezza, J. B. Rosenzweig, and M. Migliorati, “A fast tracking code for evaluating collective effects in
linear accelerators.” arXiv, Aug. 12, 2022 [Online]. Available: http://arxiv.org/abs/2208.06466
[4]
M. Gordon, W. H. Li, M. B. Andorf, A. C. Bartnik, C.
J. R. Duncan, M. Kaemingk, C. A. Pennington, I. V. Bazarov, Y.-K. Kim, and J. M. Maxson, “Four-dimensional
emittance measurements of ultrafast electron diffraction optics corrected up to sextupole order,” Phys. Rev.
Accel. Beams, vol. 25, no. 8, p. 084001, Aug. 2022, doi: 10.1103/PhysRevAccelBeams.25.084001. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.084001
[5]
C. Zhang, Y.-T. Shao, Z. Baraissov, C. J. Duncan, A.
Hanuka, A. L. Edelen, J. M. Maxson, and D. A. Muller, “Bayesian Optimization for Multi-dimensional Alignment:
Tuning Aberration Correctors and Ptychographic Reconstructions,” Microsc Microanal, vol. 28, no. S1, pp.
3146–3148, Aug. 2022, doi: 10.1017/S1431927622011692.
[Online]. Available: https://www.cambridge.org/core/product/identifier/S1431927622011692/type/journal_article
[6]
M. Andorf, J. K. Bae, A. Bartnik, I. Bazarov, L.
Cultrera, and J. Maxson, “HERACLES: A High Average Current Electron Beamline for Lifetime Testing of Novel
Photocathodes,” in Proceedings of the 13th International Particle Accelerator Conference, 2022, vol.
IPAC2022, doi: 10.18429/JACOW-IPAC2022-THPOMS036
[Online]. Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-THPOMS036.html
[7]
V. Khachatryan, M. Andorf, I. Bazarov, W. Bergan, J.
Crittenden, S. Levenson, J. Maxson, D. Rubin, J. Shanks, and S. Wang, “Helical Wiggler Design for Optical
Stochastic Cooling at CESR,” in Proceedings of the 13th International Particle Accelerator Conference,
2022, vol. IPAC2022, doi: 10.18429/JACOW-IPAC2022-THPOPT066 [Online].
Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-THPOPT066.html
[8]
C. V. Frederick (Eric), D. Filippetto, A. Gilardi,
P. Musumeci, S. Paiagua, A. Scheinker, and D. Wang, “Toward Machine Learning-Based Adaptive Control and Global
Feedback for Compact Accelerators,” in Proceedings of the 13th International Particle Accelerator
Conference, 2022, vol. IPAC2022, doi: 10.18429/JACOW-IPAC2022-TUPOST055 [Online].
Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-TUPOST055.html
[9]
P. Denham and P. Musumeci, “Analytical Scaling Laws
for Radiofrequency Based Pulse Compression in Ultrafast Electron Diffraction Beamlines.” arXiv, Jun. 03, 2021
[Online]. Available: http://arxiv.org/abs/2106.02102
[10]
M. Gordon, S. B. van der Geer, J. Maxson, and Y.-K.
Kim, “Point-to-point Coulomb effects in high brightness photoelectron beam lines for ultrafast electron
diffraction,” Phys. Rev. Accel. Beams, vol. 24, no. 8, p. 084202, Aug. 2021, doi: 10.1103/PhysRevAccelBeams.24.084202. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.084202
[11]
A. J. Dick and P. Piot, “Electron Beam Shaping
Techniques Using Optical Stochastic Cooling,” in Proc. IPAC2022, Bangkok, Thailand, Jun. 2022.
[12]
S. Levenson J., M. B. Andorf, I. V. Bazarov, D. C.
Burke, J. M. Maxson, D. L. Rubin, and S. Wang, “Light Path Construction for an Optical Stochastic Cooling
Stability Test at the Cornell Electron Storage Ring,” in Proc. IPAC2022, Bangkok, Thailand, Jun. 2022.
[13]
S. Levenson J., M. B. Andorf, I. V. Bazarov, V.
Khachatryan, J. M. Maxson, D. L. Rubin, and S. Wang, “A Path-Length Stability Experiment for Optical Stochastic
Cooling at the Cornell Electron Storage Ring,” in Proc. IPAC2022, Bangkok, Thailand, Jun. 2022.
[14]
A. Scheinker, F. Cropp, S. Paiagua, and D.
Filippetto, “Adaptive deep learning for time-varying systems with hidden parameters: Predicting changing input
beam distributions of compact particle accelerators,” arXiv arXiv:2102.10510, Mar. 2021 [Online]. Available: http://arxiv.org/abs/2102.10510
[15]
C. Pennington, “Testing Alkali Antimonide
Photocathodes in High Gradient Injectors,” SLAC, Menlo Park, CA, Nov. 2021 [Online]. Available: https://conf.slac.stanford.edu/photocathode-physics-photoinjectors-2021/agenda
[16]
J. B. Rosenzweig, N. Majernik, R. R. Robles, G.
Andonian, O. Camacho, A. Fukasawa, A. Kogar, G. Lawler, J. Miao, P. Musumeci, B. Naranjo, Y. Sakai, R. Candler,
B. Pound, C. Pellegrini, C. Emma, A. Halavanau, J. Hastings, Z. Li, M. Nasr, S. Tantawi, P. Anisimov, B.
Carlsten, F. Krawczyk, E. Simakov, L. Faillace, M. Ferrario, B. Spataro, S. Karkare, J. Maxson, Y. Ma, J.
Wurtele, A. Murokh, A. Zholents, A. Cianchi, D. Cocco, and S. B. van der Geer, “An ultra-compact x-ray
free-electron laser,” New J. Phys., vol. 22, no. 9, p. 093067, Sep. 2020, doi: 10.1088/1367-2630/abb16c. [Online]. Available: https://doi.org/10.1088/1367-2630/abb16c
[17]
J. K. Bae, A. Galdi, L. Cultrera, F. Ikponmwen, J.
Maxson, and I. Bazarov, “Improved lifetime of a high spin polarization superlattice photocathode,” Journal of
Applied Physics, vol. 127, no. 12, p. 124901, Mar. 2020, doi: 10.1063/1.5139674. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.5139674
[18]
C. J. R. Duncan, M. Kaemingk, W. H. Li, M. B.
Andorf, A. C. Bartnik, A. Galdi, M. Gordon, C. A. Pennington, I. V. Bazarov, H. J. Zeng, F. Liu, D. Luo, A.
Sood, A. M. Lindenberg, M. W. Tate, D. A. Muller, J. Thom-Levy, S. M. Gruner, and J. M. Maxson, “Multi-scale
time-resolved electron diffraction enabled by high repetition rate, high dynamic range direct electron
detection.” arXiv, Jun. 16, 2022 [Online]. Available: http://arxiv.org/abs/2206.08404
[19]
L. Faillace, R. Agustsson, M. Behtouei, F. Bosco, D.
Bruhwiler, O. Camacho, M. Carillo, A. Fukasawa, I. Gadjev, A. Giribono, L. Giuliano, S. Kutsaev, N. Majernik, M.
Migliorati, A. Mostacci, A. Murokh, L. Palumbo, B. Spataro, S. Tantawi, C. Vaccarezza, O. Williams, and J. B.
Rosenzweig, “High field hybrid photoinjector electron source for advanced light source applications,” Phys.
Rev. Accel. Beams, vol. 25, no. 6, p. 063401, Jun. 2022, doi: 10.1103/PhysRevAccelBeams.25.063401. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.063401
[20]
J. K. Nangoi, M. Gaowei, A. Galdi, J. M. Maxson, S.
Karkare, J. Smedley, and T. A. Arias, “Ab initio study of the crystal and electronic structure of mono- and
bi-alkali antimonides: Stability, Goldschmidt-like tolerance factors, and optical properties,” arXiv,
arXiv:2205.14322, May 2022 [Online]. Available: http://arxiv.org/abs/2205.14322
[21]
J. K. Bae, M. Andorf, A. Bartnik, A. Galdi, L.
Cultrera, J. Maxson, and I. Bazarov, “Operation of Cs-Sb-O activated GaAs in a high voltage DC electron gun at
high average current,” arXiv, arXiv:2205.13632, May 2022 [Online]. Available: http://arxiv.org/abs/2205.13632
[22]
J. Mann and J. Rosenzweig, “A Coherent
Bi-Directional Virtual Detector for the 1-D Schr\"odinger Equation,” arXiv, arXiv:2205.10461, May 2022 [Online].
Available: http://arxiv.org/abs/2205.10461
[23]
Montgomery, C. Jing, S. Poddar, O. Chubenko, G.
Gevorkyan, S. Karkare, P. Saha, H. A. Padmore, R. G. Hennig, and J. T. Paul, “Towards Ultra-Smooth Alkali
Antimonide Photocathode Epitaxy,” in Proc. IPAC 2021, Campinas, SP, Brazil, May 2021, doi: 10.18429/JACoW-IPAC2021-WEPAB169 [Online].
Available: https://accelconf.web.cern.ch/ipac2021/papers/wepab169.pdf
[24]
A. Dick, J. Jarvis, and P. Piot, “Characterization
of the Sub-mm Delay Plates for the IOTA Optical-Stochastic-Cooling Experiment,” FERMILAB-FN-1130-AD, 1827262,
oai:inspirehep.net:1950815, Jul. 2021 [Online]. Available: https://www.osti.gov/servlets/purl/1827262/
[25]
J. P. Gonzalez-Aguilera, R. Roussel, Y.-K. Kim, W.
Liu, P. Piot, J. G. Power, and E. Wisniewski, “Beam Diagnostics for Multi-Objective Bayesian Optimization at the
Argonne Wakefield Accelerator Facility,” in Proc. IPAC 2021, Campinas, SP, Brazil, May 2021, doi: 10.18429/JACoW-IPAC2021-MOPAB304 [Online].
Available: https://accelconf.web.cern.ch/ipac2021/papers/mopab304.pdf
[26]
A. A. McMillan, “Surface Stability, Phonon Band
Structure, and Vibrational Dybnammics of the Nb(100) Surface Oxide Reconstruction,” Ph.D. thesis, University of
Chicago, Chicago, IL, 2022.
[27]
V. Guo, P. Denham, P. Musumeci, A. Ody, and Y. Park,
“4D Beam Tomography at the UCLA PEGASUS Laboratory,” in Proc. IBIC2021, Pohang, Rep. of Korea, May 2021,
doi: 10.18429/JACoW-IBIC2021-TUPP15 [Online].
Available: https://accelconf.web.cern.ch/ibic2021/papers/tupp15.pdf
[28]
T. Oseroff, M. U. Liepe, and Z. Sun, “Sample Test
Systems for Next-Gen SRF Surfaces,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-TUOFDV07 [Online].
Available: https://srf2021.vrws.de/papers/tuofdv07.pdf
[29]
Z. Sun, M. U. Liepe, T. Oseroff, and X. Deng,
“Characterization of Atomic-Layer-Deposited NbTiN and NbTiN/AlN Films for SIS Multilayer Structures,” in
Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-WEPTEV012 [Online].
Available: https://srf2021.vrws.de/papers/weptev012.pdf
[30]
R. D. Porter, N. Banerjee, and M. U. Liepe,
“Dynamics of RF Dissipation Probed via High-speed Temperature Mapping,” in Proc. SRF ’21, Lansing, MI,
Jun. 2021, doi: 10.18429/JACoW-SRF2021-TUOFDV05
[Online]. Available: https://srf2021.vrws.de/papers/tuofdv05.pdf
[31]
G. Gaitan, A. T. Holic, G. Kulina, J. Sears, M. U.
Liepe, P. Bishop, and Z. Sun, “Development of a System for Coating SRF Cavities using Remote Plasma CVD,” in
Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-SUPTEV007 [Online].
Available: https://srf2021.vrws.de/papers/suptev007.pdf
[32]
K. Howard, Z. Sun, and M. U. Liepe, “Thermal
Annealing of Sputtered Nb3Sn and V3Si Thin Films for Superconducting RF Cavities,” in
Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-SUPFDV009 [Online].
Available: https://srf2021.vrws.de/papers/supfdv009.pdf
[33]
R. D. Porter, N. Banerjee, and M. U. Liepe, “Dynamic
Temperature Mapping of Nb3Sn Cavities,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-SUPCAV003 [Online].
Available: https://srf2021.vrws.de/papers/supcav003.pdf
[34]
R. D. Porter, “Advancing the Maximum Accelerating
Gradient of Niobium-3 Tin Superconducting Radiofrequency Accelerator Cavities: RF Measuremebts, Dynamic
Temperature Mapping, and Material Growth,” Ph.D. thesis, Cornell University, 2021 [Online]. Available: https://www.classe.cornell.edu/rsrc/Home/Research/SRF/SrfDissertations/Porter_dissertation.pdf
[35]
Z. Sun, M. U. Liepe, T. Oseroff, R. D. Porter, T. A.
Arias, Z. Baraissov, D. A. Muller, N. Sitaraman, D. Johnson-McDaniel, M. Salim, and C. Dukes, “Surface Oxides on
Nb and Nb3Sn Surfaces: Toward a Deeper Understanding,” in Proc. SRF ’21, Lansing, MI, Jun.
2021, doi: 10.18429/JACoW-SRF2021-THPTEV004
[Online]. Available: https://srf2021.vrws.de/papers/thptev004.pdf
[36]
Z. Sun, G. Gaitan, M. Ge, K. Howard, M. U. Liepe, R.
D. Porter, T. Oseroff, T. A. Arias, Z. Baraissov, M. Kelley, D. A. Muller, J. Sethna, N. Sitamaran, and K. D.
Dobson, “Toward Stoichiometric and Low-Surface-Roughness Nb3Sn Thin Films via Direct Electrochemical
Deposition,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-WEOTEV03 [Online].
Available: https://srf2021.vrws.de/papers/weotev03.pdf
[37]
N. Sitaraman, T. A. Arias, Z. Baraissov, M. M.
Kelley, D. A. Muller, M. U. Liepe, R. D. Porter, and Z. Sun, “New recipes to optimize the Niobium Oxide surface
from first-principles calculations,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-TUPFDV010 [Online].
Available: https://srf2021.vrws.de/papers/tupfdv010.pdf
[38]
P. Saha, O. Chubenko, G. S. Gevorkyan, A. Kachwala,
C. J. Knill, C. Sarabia-Cardenas, E. Montgomery, S. Poddar, J. T. Paul, R. G. Hennig, H. A. Padmore, and S.
Karkare, “Physically and chemically smooth cesium-antimonide photocathodes on single crystal strontium titanate
substrates,” Appl. Phys. Lett., vol. 120, no. 19, p. 194102, May 2022, doi: 10.1063/5.0088306. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/5.0088306
[39]
L. Cultrera, E. Rocco, F. Shahedipour-Sandvik, L. D.
Bell, J. K. Bae, I. V. Bazarov, P. Saha, S. Karkare, and A. Arjunan, “Photoemission characterization of N-polar
III-nitride photocathodes as candidate bright electron beam sources for accelerator applications,” Journal of
Applied Physics, vol. 131, no. 12, p. 124902, Mar. 2022, doi: 10.1063/5.0076488. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/5.0076488
[40]
A. A. McMillan, C. J. Thompson, M. M. Kelley, J. D.
Graham, T. A. Arias, and S. J. Sibener, “A combined helium atom scattering and density-functional theory study
of the Nb(100) surface oxide reconstruction: Phonon band structures and vibrational dynamics,” J. Chem.
Phys., vol. 156, no. 12, p. 124702, Mar. 2022, doi: 10.1063/5.0085653. [Online]. Available: https://aip.scitation.org/doi/10.1063/5.0085653
[41]
C. T. Parzyck, A. Galdi, J. K. Nangoi, W. J. I.
DeBenedetti, J. Balajka, B. D. Faeth, H. Paik, C. Hu, T. A. Arias, M. A. Hines, D. G. Schlom, K. M. Shen, and J.
M. Maxson, “Single-Crystal Alkali Antimonide Photocathodes: High Efficiency in the Ultrathin Limit,” Phys.
Rev. Lett., vol. 128, no. 11, p. 114801, Mar. 2022, doi: 10.1103/PhysRevLett.128.114801. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.128.114801
[42]
W. H. Li, C. J. R. Duncan, M. B. Andorf, A. C.
Bartnik, E. Bianco, L. Cultrera, A. Galdi, M. Gordon, M. Kaemingk, C. A. Pennington, L. F. Kourkoutis, I. V.
Bazarov, and J. M. Maxson, “A kiloelectron-volt ultrafast electron micro-diffraction apparatus using low
emittance semiconductor photocathodes,” Structural Dynamics, vol. 9, no. 2, p. 024302, Mar. 2022, doi: 10.1063/4.0000138. [Online]. Available: https://aca.scitation.org/doi/10.1063/4.0000138
[43]
J. Jarvis, V. Lebedev, A. Romanov, D. Broemmelsiek,
K. Carlson, S. Chattopadhyay, A. Dick, D. Edstrom, I. Lobach, S. Nagaitsev, H. Piekarz, P. Piot, J. Ruan, J.
Santucci, G. Stancari, and A. Valishev, “First Experimental Demonstration of Optical Stochastic Cooling,”
arXiv:2203.08899 [physics], Mar. 2022, doi: 10.48550/arXiv.2203.08899. [Online]. Available: http://arxiv.org/abs/2203.08899
[44]
J. B. Gibson, A. C. Hire, and R. G. Hennig,
“Data-Augmentation for Graph Neural Network Learning of the Relaxed Energies of Unrelaxed Structures,”
arXiv:2202.13947 [physics], Feb. 2022, doi: 10.48550/arXiv.2202.13947. [Online]. Available: http://arxiv.org/abs/2202.13947
[45]
M. Gordon, W. H. Li, Maxson, J., and Kim, Young-Kee,
“APS -APS April Meeting 2022 - Event - Ultrafast Electron Diffraction with Stray Sextupole Field Correction,” in
Bulletin of the American Physical Society, Apr. 2022 [Online]. Available: https://meetings.aps.org/Meeting/APR22/Session/B07.1
[46]
J. N. Nelson, N. J. Schreiber, A. B. Georgescu, B.
H. Goodge, B. D. Faeth, C. T. Parzyck, C. Zeledon, L. F. Kourkoutis, A. J. Millis, A. Georges, D. G. Schlom, and
K. M. Shen, “Interfacial charge transfer and persistent metallicity of ultrathin
SrIrO3/SrRuO3 heterostructures,” Science Advances, vol. 8, no. 5, p. eabj0481, Feb.
2022, doi: 10.1126/sciadv.abj0481. [Online]. Available: https://www.science.org/doi/full/10.1126/sciadv.abj0481
[47]
S. Deyo, M. Kelley, N. Sitaraman, T. Oseroff, D. B.
Liarte, T. Arias, M. Liepe, and J. P. Sethna, “Dissipation by surface states in superconducting RF cavities,”
arXiv:2201.07747 [cond-mat, physics:physics], Jan. 2022, doi: 10.48550/arXiv.2201.07747. [Online]. Available: http://arxiv.org/abs/2201.07747
[48]
V. Yu, C. Hansel, G. Lawler, J. Mann, M. Mills, and
J. Rosenzweig, “Magneto-Optical Trap Cathode for High Brightness Applications,” Proceedings of the 12th
International Particle Accelerator Conference, vol. IPAC2021, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB344. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB344.html
[49]
Y. Shao, G. Lawler, B. Naranjo, and J. Rosenzweig,
“Tapered Modular Quadrupole Magnet to Reduce Higher-Order Optical Aberrations,” in Proceedings of the 12th
International Particle Accelerator Conference, 2021, vol. IPAC2021, doi: 10.18429/JACOW-IPAC2021-THPAB328 [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB328.html
[50]
J. Mann, T. Arias, G. Lawler, J. K. Nangoi, and J.
Rosenzweig, “Simulations of Nanoblade-Enhanced Laser-Induced Cathode Emissions and Analyses of Yield, MTE, and
Brightness,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, 2021,
doi: 10.18429/JACOW-IPAC2021-WEPAB147. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB147.html
[51]
G. Lawler, N. Majernik, and J. Rosenzweig,
“Cryogenic Component and Material Testing for Compact Electron Beamlines,” in Proceedings of the 12th
International Particle Accelerator Conference, 2021, vol. IPAC2021, p. 4 pages, 0.680 MB, doi: 10.18429/JACOW-IPAC2021-WEPAB098 [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB098.html
[52]
G. Lawler, J. Mann, J. Rosenzweig, R. Roussel, and
V. Yu, “Initial Nanoblade-Enhanced Laser-Induced Cathode Emission Measurements,” Proceedings of the 12th
International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 1.601 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB097. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB097.html
[53]
G. Lawler, A. Fukasawa, Z. Li, N. Majernik, J.
Rosenzweig, A. Suraj, and M. Yadav, “RF Testbed for Cryogenic Photoemission Studies,” Proceedings of the 12th
International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.968 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB096. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB096.html
[54]
A. Fukasawa, G. Andonian, O. Camacho, C. Hansel, G.
Lawler, Z. Li, W. Lynn, N. Majernik, J. Mann, P. Manwani, B. Naranjo, R. Robles, J. Rosenzweig, Y. Sakai, S.
Tantawi, O. Williams, and M. Yadav, “Advanced Photoinjector Development at the UCLA SAMURAI Laboratory,”
Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.298
MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB056.
[Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB056.html
[55]
N. Majernik, G. Andonian, O. Camacho, A. Fukasawa,
G. Lawler, W. Lynn, B. Naranjo, R. Robles, J. Rosenzweig, Y. Sakai, and O. Williams, “Demonstration FELs Using
UC-XFEL Technologies at the SAMURAI Laboratory,” Proceedings of the 12th International Particle Accelerator
Conference, vol. IPAC2021, p. 4 pages, 0.266 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB092. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB092.html
[56]
Y. Gao, W. Lin, K. A. Brown, X. Gu, G. H.
Hoffstaetter, J. Morris, and S. Seletskiy, “Bayesian optimization experiment for trajectory alignment at the low
energy RHIC electron cooling system,” Phys. Rev. Accel. Beams, vol. 25, no. 1, p. 014601, Jan. 2022, doi:
10.1103/PhysRevAccelBeams.25.014601. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.014601
[57]
A. Romanov, S. Nagaitsev, J. Santucci, G. Stancari,
A. Valishev, N. Kuklev, and I. Lobach, “3D Tracking of Single Electron in IOTA,” in IPAC 2021, Campinas,
SP, Brazil, 2021, doi: 10.18429/JACoW-IPAC2021-THXB01
[Online]. Available:
https://accelconf.web.cern.ch/ipac2021/papers/thxb01.pdf
2021
[1]
C. T. Parzyck, A. Galdi, J. K. Nangoi, W. J. I.
DeBenedetti, J. Balajka, B. D. Faeth, H. Paik, C. Hu, T. A. Arias, M. A. Hines, D. G. Schlom, K. M. Shen, and J.
M. Maxson, “A single-crystal alkali antimonide photocathode: high efficiency in the ultra-thin limit,”
arXiv:2112.14366 [cond-mat, physics:physics], Dec. 2021, doi: 10.48550/arXiv.2112.14366. [Online]. Available: http://arxiv.org/abs/2112.14366
[2]
R. G. Farber, S. A. Willson, and S. J. Sibener, “Role
of nanoscale surface defects on Sn adsorption and diffusion behavior on oxidized Nb(100),” Journal of Vacuum
Science & Technology A, vol. 39, no. 6, p. 063212, Dec. 2021, doi: 10.1116/6.0001374. [Online]. Available: https://avs.scitation.org/doi/full/10.1116/6.0001374
[3]
W. H. Li, C. J. R. Duncan, M. B. Andorf, A. C.
Bartnik, E. Bianco, L. Cultrera, A. Galdi, M. Gordon, M. Kaemingk, C. A. Pennington, L. F. Kourkoutis, I. V.
Bazarov, and J. M. Maxson, “A kiloelectron-volt ultrafast electron micro-diffraction apparatus using low emittance
semiconductor photocathodes,” arXiv:2111.07922 [physics], Nov. 2021, doi: 10.48550/arXiv.2111.07922. [Online]. Available: http://arxiv.org/abs/2111.07922
[4]
G. Ha, K.-J. Kim, P. Piot, J. G. Power, and Y. Sun,
“Bunch Shaping in Electron Linear Accelerators,” arXiv:2111.00520 [physics], Oct. 2021, doi: 10.48550/arXiv.2111.00520. [Online]. Available: http://arxiv.org/abs/2111.00520
[5]
L. Cultrera, E. Rocco, F. Shahedipour-Sandvik, L. D.
Bell, J. K. Bae, I. V. Bazarov, P. Saha, S. Karkare, and A. Arjunan, “Photoemission characterization of N-polar
III-Nitride photocathodes as bright electron beam source for accelerator applications,” arXiv:2110.01533
[physics], Oct. 2021, doi: 10.48550/arXiv.2110.01533. [Online]. Available: http://arxiv.org/abs/2110.01533
[6]
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto,
“An adaptive approach to machine learning for compact particle accelerators,” Sci Rep, vol. 11, no. 1, p.
19187, Sep. 2021, doi: 10.1038/s41598-021-98785-0.
[Online]. Available: https://www.nature.com/articles/s41598-021-98785-0
[7]
J. Lim, A. C. Hire, Y. Quan, J. S. Kim, S. R. Xie, R.
S. Kumar, D. Popov, C. Park, R. J. Hemley, J. J. Hamlin, R. G. Hennig, P. J. Hirschfeld, and G. R. Stewart,
“Creating superconductivity in WB2 through pressure-induced metastable planar defects,” arXiv:2109.11521
[cond-mat], Sep. 2021, doi: 10.48550/arXiv.2109.11521. [Online]. Available: http://arxiv.org/abs/2109.11521
[8]
J. K. Nangoi, S. Karkare, R. Sundararaman, H. A.
Padmore, and T. A. Arias, “Importance of bulk excitations and coherent electron-photon-phonon scattering in
photoemission from PbTe(111): Ab initio theory with experimental comparisons,” Physical Review B, vol. 104,
no. 11, Sep. 2021, doi: 10.1103/physrevb.104.115132.
[Online]. Available: https://arxiv.org/abs/2006.11924
[9]
J. T. Paul, A. Galdi, C. Parzyck, K. M. Shen, J.
Maxson, and R. G. Hennig, “Computational synthesis of substrates by crystal cleavage,” npj Comput Mater,
vol. 7, no. 1, pp. 1–6, Sep. 2021, doi: 10.1038/s41524-021-00608-3. [Online]. Available: https://www.nature.com/articles/s41524-021-00608-3
[10]
V. Guo, P. Denham, P. Musumeci, A. Ody, and Y. Park,
“4D Beam Tomography at the ULCA,” in IBIC 2021, Seoul, Sep. 2021.
[11]
T. Y. Posos, O. Chubenko, and S. V. Baryshev,
“Confirmation of Transit-Time Limited Field Emission in Advanced Carbon Materials with Fast Pattern Recognition
Algorithm,” arXiv:2108.07440 [physics], Aug. 2021, doi: 10.48550/arXiv.2108.07440. [Online]. Available: http://arxiv.org/abs/2108.07440
[12]
O. Chubenko, S. Karkare, D. A. Dimitrov, J. K. Bae, L.
Cultrera, I. Bazarov, and A. Afanasev, “Monte Carlo modeling of spin-polarized photoemission from p-doped bulk
GaAs,” Journal of Applied Physics, vol. 130, no. 6, p. 063101, Aug. 2021, doi: 10.1063/5.0060151. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/5.0060151
[13]
J. Lim, A. C. Hire, Y. Quan, J. Kim, L. Fanfarillo, S.
R. Xie, R. S. Kumar, C. Park, R. J. Hemley, Y. K. Vohra, R. G. Hennig, P. J. Hirschfeld, G. R. Stewart, and J. J.
Hamlin, “High-pressure study of the low-Z rich superconductor Be22Re,” Phys. Rev. B, vol. 104, no. 6, p.
064505, Aug. 2021, doi: 10.1103/PhysRevB.104.064505.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.104.064505
[14]
D. B. Durham, C. M. Pierce, F. Riminucci, S. R. Loria,
K. Kanellopulos, I. Bazarov, J. Maxson, S. Cabrini, A. M. Minor, and D. Filippetto, “Characterizing
plasmon-enhanced photoemitters for bright ultrafast electron beams,” in Plasmonics: Design, Materials,
Fabrication, Characterization, and Applications XIX, Aug. 2021, vol. 11797, p. 117972D, doi: 10.1117/12.2597708 [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11797/117972D/Characterizing-plasmon-enhanced-photoemitters-for-bright-ultrafast-electron-beams/10.1117/12.2597708.short
[15]
C. Zhang, Z. Baraissov, C. Duncan, A. Hanuka, A.
Edelen, J. Maxson, and D. Muller, “Aberration Corrector Tuning with Machine-Learning-Based Emittance Measurements
and Bayesian Optimization,” Microscopy and Microanalysis, vol. 27, no. S1, pp. 810–812, Aug. 2021, doi: 10.1017/S1431927621003214. [Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/aberration-corrector-tuning-with-machinelearningbased-emittance-measurements-and-bayesian-optimization/D89FA657D93568EE0A1DC768248FDFC0
[16]
N. Majernik, G. Andonian, R. Roussel, S. Doran, G. Ha,
J. Power, E. Wisniewski, and J. Rosenzweig, “Multileaf Collimator for Real-Time Beam Shaping using Emittance
Exchange,” arXiv:2107.00125 [physics], Jun. 2021, doi: 10.48550/arXiv.2107.00125. [Online]. Available: http://arxiv.org/abs/2107.00125
[17]
R. Roussel, J. P. Gonzalez-Aguilera, Y.-K. Kim, E.
Wisniewski, W. Liu, P. Piot, J. Power, A. Hanuka, and A. Edelen, “Turn-Key Constrained Parameter Space Exploration
for Particle Accelerators Using Bayesian Active Learning,” arXiv:2106.09202 [physics], Jun. 2021, doi: 10.48550/arXiv.2106.09202. [Online]. Available: http://arxiv.org/abs/2106.09202
[18]
A. Galdi, J. Balajka, W. J. I. DeBenedetti, L.
Cultrera, I. V. Bazarov, M. A. Hines, and J. M. Maxson, “Reduction of surface roughness emittance of Cs3Sb
photocathodes grown via codeposition on single crystal substrates,” Appl. Phys. Lett., vol. 118, no. 24, p.
244101, Jun. 2021, doi: 10.1063/5.0053186. [Online]. Available: https://aip.scitation.org/doi/10.1063/5.0053186
[19]
R. Roussel, A. Hanuka, and A. Edelen, “Multiobjective
Bayesian optimization for online accelerator tuning,” Phys. Rev. Accel. Beams, vol. 24, no. 6, p. 062801,
Jun. 2021, doi: 10.1103/PhysRevAccelBeams.24.062801. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.062801
[20]
J. Mann and J. Rosenzweig, “Semi-Classical Cutoff
Energies for Electron Emission and Scattering at Field-Enhancing Nanostructures with Large Ponderomotive
Amplitudes,” arXiv:2105.10601 [cond-mat], May 2021, doi: 10.48550/arXiv.2105.10601. [Online]. Available: http://arxiv.org/abs/2105.10601
[21]
Kuklev, Nikita, Valishev, Alexander, Nagaitsev,
Sergei, and Kim, Young-Kee, “Experimental Studies of Beam Dynamics in Integrable Storage Rings,” in Bulletin of
the American Physical Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/Z07.3
[22]
Manwani, Pratik, Majernik, Nathan, Hansel, Claire, and
Rosenzweig, James, “Optical-period bunch trains to resonantly excite TV/m wakefields in the quasi-nonlinear regime
and the E-317 experiment at FACET-II,” in Bulletin of the American Physical Society, Apr. 2021 [Online].
Available: https://meetings.aps.org/Meeting/APR21/Session/T08.3
[23]
Hansel, Claire, Yadav, Monika, An, Weiming, Manwani,
Pratik, Mori, Warren, and J. Rosenzweig, “Plasma Wakefield Accelerators with Ion Motion and the E-314 Experiment
at FACET-II,” in Bulletin of the American Physical Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/T08.2
[24]
Gordon, Matthew, Van Der Geer, S.B., Maxson, Jared,
and Kim, Young-Kee, “Point-to-Point Coulomb Effects in High Brightness Photoelectron Beamlines for Ultrafast
Electron Diffraction,” in Bulletin of the American Physical Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/T08.5
[25]
Roussel, Ryan, Hanuka, Adi, and Edelen, Auralee,
“Multi-Objective Bayesian Optimization for Online Accelerator Tuning,” in Bulletin of the American Physical
Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/E15.7
[26]
Gupta, Lipi, Mishra, Aashwin, and Edelen, Auralee,
“Deep Learning Methods for Uncertainty Quantification at the SLAC Linac Coherent Light Source,” in Bulletin of
the American Physical Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/E15.9
[27]
S. T. Wang, M. B. Andorf, I. V. Bazarov, W. F. Bergan,
V. Khachatryan, J. M. Maxson, and D. L. Rubin, “Simulation of transit-time optical stochastic cooling process in
Cornell Electron Storage Ring,” arXiv:2103.16419 [physics], Mar. 2021, doi: 10.48550/arXiv.2103.16419. [Online]. Available: http://arxiv.org/abs/2103.16419
[28]
C. M. Pierce, J. K. Bae, A. Galdi, L. Cultrera, I.
Bazarov, and J. Maxson, “Beam brightness from Cs–Te near the photoemission threshold,” Appl. Phys. Lett.,
vol. 118, no. 12, p. 124101, Mar. 2021, doi: 10.1063/5.0044917.
[Online]. Available: https://aip.scitation.org/doi/full/10.1063/5.0044917
[29]
Z. Sun, “Study of alternative materials for next
generation SRF cavities at Cornell University,” Jefferson Laboratory, Newport News, VA, Mar. 15, 2021.
[30]
R. R. Robles, O. Camacho, A. Fukasawa, N. Majernik,
and J. B. Rosenzweig, “Versatile, High Brightness, Cryogenic Photoinjector Electron Source,” arXiv:2103.08789
[physics], Mar. 2021, doi: 10.48550/arXiv.2103.08789. [Online]. Available: http://arxiv.org/abs/2103.08789
[31]
L. Gupta, A. Edelen, N. Neveu, A. Mishra, C. Mayes,
and Y.-K. Kim, “Improving Surrogate Model Accuracy for the LCLS-II Injector Frontend Using Convolutional Neural
Networks and Transfer Learning,” arXiv:2103.07540 [physics], Mar. 2021, doi: 10.48550/arXiv.2103.07540. [Online]. Available: http://arxiv.org/abs/2103.07540
[32]
N. S. Sitaraman, M. M. Kelley, R. D. Porter, M. U.
Liepe, T. A. Arias, J. Carlson, A. R. Pack, M. K. Transtrum, and R. Sundararaman, “Effect of the density of states
at the Fermi level on defect free energies and superconductivity: A case study of Nb3Sn,” Phys. Rev.
B, vol. 103, no. 11, p. 115106, Mar. 2021, doi: 10.1103/PhysRevB.103.115106. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.103.115106
[33]
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto,
“Demonstration of adaptive machine learning-based distribution tracking on a compact accelerator: Towards enabling
model-based 6D non-invasive beam diagnostics,” arXiv:2102.10510 [physics], Feb. 2021, doi: 10.48550/arXiv.2102.10510. [Online]. Available: http://arxiv.org/abs/2102.10510
[34]
B. Holst, G. Alexandrowicz, N. Avidor, G. Benedek, G.
Bracco, W. E. Ernst, D. Farías, A. P. Jardine, K. Lefmann, J. R. Manson, R. Marquardt, S. M. Artés, S. J. Sibener,
J. W. Wells, A. Tamtögl, and W. Allison, “Material properties particularly suited to be measured with helium
scattering: selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic
substrates, topological insulators and superconducting radio frequency materials,” Phys. Chem. Chem. Phys.,
Feb. 2021, doi: 10.1039/D0CP05833E. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2021/cp/d0cp05833e
[35]
J. Carlson, A. Pack, M. K. Transtrum, J. Lee, D. N.
Seidman, D. B. Liarte, N. Sitaraman, A. Senanian, J. P. Sethna, T. Arias, S. Posen, and M. M. Kelley, “Analysis of
Magnetic Vortex Dissipation in Sn-Segregated Boundaries in Nb3Sn SRF Cavities,” Phys. Rev. B,
vol. 103, no. 2, p. 024516, Jan. 2021, doi: 10.1103/PhysRevB.103.024516. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.103.024516
[36]
S. Nagaitsev, Z. Huang, J. Power, J.-L. Vay, P. Piot,
L. Spentzouris, J. Rosenzweig, Y. Cai, S. Cousineau, M. Conde, M. Hogan, A. Valishev, M. Minty, T. Zolkin, X.
Huang, V. Shiltsev, J. Seeman, J. Byrd, Y. Hao, B. Dunham, B. Carlsten, A. Seryi, and R. Patterson, “Accelerator
and Beam Physics Research Goals and Opportunities,” arXiv:2101.04107 [physics], Jan. 2021, doi: 10.48550/arXiv.2101.04107. [Online]. Available: http://arxiv.org/abs/2101.04107
[37]
M. M. Kelley, N. S. Sitaraman, and T. A. Arias, “Ab
Initio Theory of the Impact from Grain Boundaries and Substitutional Defects on Superconducting Nb3Sn,”
Superconductor Science & Technology, vol. 34, no. 1, p. 015015, Jan. 2021, doi: 10.1088/1361-6668/abc8ce. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6668/abc8ce
[38]
V. Yu, C. Hansel, G. Lawler, J. Mann, M. Mills, and J.
Rosenzweig, “Magneto-Optical Trap Cathode for High Brightness Applications,” Proceedings of the 12th
International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.286 MB, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB344. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB344.html
[39]
Z. Sun, M. Ge, M. Liepe, T. Oseroff, R. D. Porter, A.
Connolly, and M. Thompson, “Surface Roughness Reduction of Nb3Sn Thin Films via Laser Annealing for
Superconducting Radio-Frequency Cavities,” in IPAC 2021, Virtual, 2021.
[40]
Y. Shao, G. Lawler, B. Naranjo, and J. Rosenzweig,
“Tapered Modular Quadrupole Magnet to Reduce Higher-Order Optical Aberrations,” Proceedings of the 12th
International Particle Accelerator Conference, vol. IPAC2021, p. 3 pages, 0.503 MB, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB328. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB328.html
[41]
P. Saha, O. Chubenko, G. Gevorkyan, A. Kachwala, S.
Karkare, C. Knill, E. Montgomery, H. Padmore, and S. Poddar, “Optical and Surface Characterization of
Alkali-Antimonide Photocathodes,” Proceedings of the 12th International Particle Accelerator Conference,
vol. IPAC2021, p. 4 pages, 0.591 MB, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB142. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB142.html
[42]
R. Roussel and A. Hanuka, “Towards Hysteresis Aware
Bayesian Regression and Optimization,” Proceedings of the 12th International Particle Accelerator
Conference, vol. IPAC2021, p. 4 pages, 0.556 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB289. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB289.html
[43]
A. Romanov, S. Nagaitsev, J. Santucci, G. Stancari, A.
Valishev, N. Kuklev, and I. Lobach, “3D Tracking of Single Electron in IOTA,” in IPAC 2021, Campinas, SP,
Brazil, 2021, doi: 10.18429/JACoW-IPAC2021-THXB01
[Online]. Available: https://accelconf.web.cern.ch/ipac2021/papers/thxb01.pdf
[44]
P. Manwani, D. Bruhwiler, B. Hidding, M. Litos, N.
Majernik, and J. Rosenzweig, “High Brightness Electron Beams from Dragon Tail Injection and the E-312 Experiment
at FACET-II,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4
pages, 0.274 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB146. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB146.html
[45]
J. Mann, T. Arias, G. Lawler, J. K. Nangoi, and J.
Rosenzweig, “Simulations of Nanoblade-Enhanced Laser-Induced Cathode Emissions and Analyses of Yield, MTE, and
Brightness,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4
pages, 1.317 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB147. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB147.html
[46]
N. Majernik, G. Andonian, O. Camacho, A. Fukasawa, G.
Lawler, W. Lynn, B. Naranjo, R. Robles, J. Rosenzweig, Y. Sakai, and O. Williams, “Demonstration FELs Using
UC-XFEL Technologies at the SAMURAI Laboratory,” Proceedings of the 12th International Particle Accelerator
Conference, vol. IPAC2021, p. 4 pages, 0.266 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB092. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB092.html
[47]
G. Lawler, J. Mann, J. Rosenzweig, R. Roussel, and V.
Yu, “Initial Nanoblade-Enhanced Laser-Induced Cathode Emission Measurements,” Proceedings of the 12th
International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 1.601 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB097. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB097.html
[48]
G. Lawler, N. Majernik, and J. Rosenzweig, “Cryogenic
Component and Material Testing for Compact Electron Beamlines,” Proceedings of the 12th International Particle
Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.680 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB098. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB098.html
[49]
G. Lawler, A. Fukasawa, Z. Li, N. Majernik, J.
Rosenzweig, A. Suraj, and M. Yadav, “RF Testbed for Cryogenic Photoemission Studies,” Proceedings of the 12th
International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.968 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB096. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB096.html
[50]
C. Knill, S. Karkare, and H. Padmore, “Near-Threshold
Nonlinear Photoemission From Cu(100),” Proceedings of the 12th International Particle Accelerator
Conference, vol. IPAC2021, p. 4 pages, 0.154 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB099. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB099.html
[51]
G. Lawler, Majernik, Nathan, A. Fukasawa, Y. Sakai,
and J. B. Rosenzweig, “Cryocooler Technology for Electron Particle Accelerators,” in Cryocoolers 21,
Boulder, CO, 2021.
[52]
A. Fukasawa, G. Andonian, O. Camacho, C. Hansel, G.
Lawler, Z. Li, W. Lynn, N. Majernik, J. Mann, P. Manwani, B. Naranjo, R. Robles, J. Rosenzweig, Y. Sakai, S.
Tantawi, O. Williams, and M. Yadav, “Advanced Photoinjector Development at the UCLA SAMURAI Laboratory,”
Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.298 MB,
2021, doi: 10.18429/JACOW-IPAC2021-WEPAB056.
[Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB056.html
[53]
A. Dick, J. Jarvis, and P. Piot, “Numerical Modelling
of the Optical Stochastic Cooling Experiment at IOTA,” Proceedings of the 12th International Particle
Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.299 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB271. [Online].
Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB271.html
[54]
A. Dick, J. Jarvis, and P. Piot, “Characterization and
Simulation of Optical Delay System for the Proof-of-Principle Experiment of Optical Stochastic Cooling at IOTA,”
Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 1.880 MB,
2021, doi: 10.18429/JACOW-IPAC2021-WEPAB270.
[Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB270.html
2020
[1]
V. Lebedev, J. Jarvis, H. Piekarz, A. Romanov, J.
Ruan, and M. Andorf, “Conceptual Design Report: Optical Stochastic Cooling at IOTA,” arXiv:2012.09967
[physics], Dec. 2020, doi: 10.48550/arXiv.2012.09967. [Online]. Available: http://arxiv.org/abs/2012.09967
[2]
A. Romanov, J. Santucci, G. Stancari, A. Valishev, and
N. Kuklev, “Experimental 3-dimensional tracking of the dynamics of a single electron in the Fermilab Integrable
Optics Test Accelerator (IOTA),” arXiv:2012.04148 [physics], Dec. 2020, doi: 10.48550/arXiv.2012.04148. [Online]. Available: http://arxiv.org/abs/2012.04148
[3]
S. A. Willson, “Deconvoluting Initial Nb-Sn-O
Interactions: Spatially Resolved Electronic Characterization of Sn Reconstructions on (3×1)-O Nb(100),” Cornell
University, Ithaca, NY, Nov. 10, 2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1487/
[4]
Sun, Zeming, “Electrochemical deposition for
generating Nb3Sn films with low surface roughness and stoichiometry,” Cornell University, Ithaca, NY,
Nov. 10, 2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1461/
[5]
Ryan Porter, “Growth Studies and Optimization of
Nb3Sn Coatings,” Cornell University, Ithaca, NY, Nov. 10, 2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1470/
[6]
Farber, R.G., “Spatially Resolved Adsorption
Structures and Diffusion Dynamics of Sn on (3×1)-O Nb(100),” Cornell University, Ithaca, NY, Nov. 10, 2020
[Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1484/
[7]
Liepe, M, “Compact Superconducting RF Electron
Accelerating Systems,” in Bulletin of the American Physical Society, Oct. 2020 [Online]. Available: https://meetings.aps.org/Meeting/DNP20/Session/LA.2
[8]
A. Galdi, W. J. I. DeBenedetti, J. Balajka, L.
Cultrera, I. V. Bazarov, J. M. Maxson, and M. A. Hines, “The effects of oxygen-induced phase segregation on the
interfacial electronic structure and quantum efficiency of Cs3Sb photocathodes,” The Journal of
Chemical Physics, vol. 153, no. 14, p. 144705, Oct. 2020, doi: 10.1063/5.0024020. [Online]. Available: http://aip.scitation.org/doi/10.1063/5.0024020
[9]
M. B. Andorf, W. F. Bergan, I. V. Bazarov, J. M.
Maxson, V. Khachatryan, D. L. Rubin, and S. T. Wang, “Optical stochastic cooling with an arc bypass in the Cornell
Electron Storage Ring,” Phys. Rev. Accel. Beams, vol. 23, no. 10, p. 102801, Oct. 2020, doi: 10.1103/PhysRevAccelBeams.23.102801. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.102801
[10]
A. A. McMillan, J. D. Graham, S. A. Willson, R. G.
Farber, C. J. Thompson, and S. J. Sibener, “Persistence of the Nb(100) surface oxide reconstruction at elevated
temperatures,” Supercond. Sci. Technol., vol. 33, no. 10, p. 105012, Sep. 2020, doi: 10.1088/1361-6668/abaec0. [Online]. Available: https://doi.org/10.1088/1361-6668/abaec0
[11]
M. B. Andorf, V. A. Lebedev, and P. Piot, “Single-pass
Cr:ZnSe amplifier for broadband infrared undulator radiation,” Optics Express, vol. 28, no. 18, p. 26601,
Aug. 2020, doi: 10.1364/OE.396431. [Online]. Available: https://www.osapublishing.org/abstract.cfm?URI=oe-28-18-26601
[12]
S. Karkare, G. Adhikari, W. A. Schroeder, J. K.
Nangoi, T. Arias, J. Maxson, and H. Padmore, “Ultracold electrons via Near-Threshold Photoemission from
Single-Crystal Cu(100),” Phys. Rev. Lett., vol. 125, no. 5, p. 054801, Jul. 2020, doi: 10.1103/PhysRevLett.125.054801. [Online]. Available:
https://arXiv.org/abs/2002.11579
[13]
C. M. Pierce, M. B. Andorf, E. Lu, C. Gulliford, I. V.
Bazarov, J. M. Maxson, M. Gordon, Y.-K. Kim, N. P. Norvell, B. M. Dunham, and T. O. Raubenheimer, “Low intrinsic
emittance in modern photoinjector brightness,” Phys. Rev. Accel. Beams, vol. 23, no. 7, p. 070101, Jul.
2020, doi: 10.1103/PhysRevAccelBeams.23.070101.
[Online]. Available: http://arxiv.org/abs/2004.08034
[14]
C. J. R. Duncan, D. A. Muller, and J. M. Maxson,
“Lossless Monochromation for Electron Microscopy with Pulsed Photoemission Sources and Radio-Frequency Cavities,”
Physical Review Applied, vol. 14, no. 1, Jul. 2020, doi: 10.1103/PhysRevApplied.14.014060. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevApplied.14.014060
[15]
E. Padgett, M. E. Holtz, P. Cueva, Y.-T. Shao, E.
Langenberg, D. G. Schlom, and D. A. Muller, “The exit-wave power-cepstrum transform for scanning nanobeam electron
diffraction: robust strain mapping at subnanometer resolution and subpicometer precision,” Ultramicroscopy,
vol. 214, p. 112994, Jul. 2020, doi: 10.1016/j.ultramic.2020.112994. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0304399119303377
[16]
J. N. Nelson, C. T. Parzyck, B. D. Faeth, J. K.
Kawasaki, D. G. Schlom, and K. M. Shen, “Mott gap collapse in lightly hole-doped Sr2−xKxIrO4,” Nature
Communications, vol. 11, no. 1, May 2020, doi: 10.1038/s41467-020-16425-z. [Online]. Available: http://www.nature.com/articles/s41467-020-16425-z
[17]
A. R. Pack, J. Carlson, S. Wadsworth, and M. K.
Transtrum, “Vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory in two and three
dimensions: Role of surface defects and material inhomogeneities,” Physical Review B, vol. 101, no. 14,
Apr. 2020, doi: 10.1103/PhysRevB.101.144504. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevB.101.144504
[18]
J. B. Rosenzweig, “Ultra-compact X-ray FEL Based on
Advanced Cryogenic RF Techniques,” in Proceedings of the APS Virtual April 2020 Meeting, Virtual, Apr. 2020
[Online]. Available: https://aps-april.onlineeventpro.freeman.com/speakers/rosen~physics.ucla.edu/James-Rosenzweig
[19]
J. Lee, Z. Mao, K. He, Z. H. Sung, T. Spina, S.-I.
Baik, D. L. Hall, M. Liepe, D. N. Seidman, and S. Posen, “Grain-boundary structure and segregation in
Nb3Sn coatings on Nb for high-performance superconducting radiofrequency cavity applications,” Acta
Materialia, vol. 188, pp. 155–165, Apr. 2020, doi: 10.1016/j.actamat.2020.01.055. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S135964542030080X
[20]
C. Hansel, W. An, W. Mori, and J. B. Rosenzweig,
“Nonlinear equilibria and emittance growth in plasma wakefield accelerators with ion motion,” arXiv:2003.12062
[physics], Mar. 2020 [Online]. Available: http://arxiv.org/abs/2003.12062
[21]
J. B. Rosenzweig, N. Majernik, R. R. Robles, G.
Andonian, O. Camacho, A. Fukasawa, A. Kogar, G. Lawler, J. Miao, P. Musumeci, B. Naranjo, Y. Sakai, R. Candler, B.
Pound, C. Pellegrini, C. Emma, A. Halavanau, J. Hastings, Z. Li, M. Nasr, S. Tantawi, P. Anisimov, B. Carlsten, F.
Krawczyk, E. Simakov, L. Faillace, M. Ferrario, B. Spataro, S. Karkare, J. Maxson, Y. Ma, J. Wurtele, A. Murokh,
A. Zholents, A. Cianchi, and D. Cocco, “An Ultra-Compact X-Ray Free-Electron Laser,” arXiv:2003.06083
[cond-mat, physics:hep-ex, physics:physics], Mar. 2020 [Online]. Available: http://arxiv.org/abs/2003.06083
[22]
P. Denham, F. Cropp, and P. Musumeci, “Analysis of
Skew Quadrupole Compensation in RF-Photoinjectors,” arXiv:2003.00049 [physics], Feb. 2020 [Online].
Available: http://arxiv.org/abs/2003.00049
[23]
N. Stilin, A. Holic, M. Liepe, R. Porter, and J.
Sears, “Stable CW Operation of Nb3Sn SRF Cavity at 10 MV/m using Conduction Cooling,”
arXiv:2002.11755 [physics], Feb. 2020 [Online]. Available: http://arxiv.org/abs/2002.11755
[24]
A. R. Pack, J. Carlson, S. Wadsworth, and M. K.
Transtrum, “Role of surface defects and material inhomogeneities for vortex nucleation in superconductors within
time-dependent Ginzburg-Landau theory in 2 and 3 dimensions,” Phys. Rev. B, vol. In press., Feb. 2020
[Online]. Available: http://arxiv.org/abs/1911.02132
[25]
C. T. Parzyck, B. D. Faeth, G. N. Tam, G. R. Stewart,
and K. M. Shen, “Enhanced surface superconductivity in Ba(Fe 0.95 Co 0.05 ) 2 As
2,” Applied Physics Letters, vol. 116, no. 6, p. 062601, Feb. 2020, doi: 10.1063/1.5133647. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.5133647
[26]
L. Cultrera, A. Galdi, J. K. Bae, F. Ikponmwen, J.
Maxson, and I. Bazarov, “Long lifetime polarized electron beam production from negative electron affinity GaAs
activated with Sb-Cs-O: Trade-offs between efficiency, spin polarization, and lifetime,” Physical Review
Accelerators and Beams, vol. 23, no. 2, Feb. 2020, doi: 10.1103/PhysRevAccelBeams.23.023401. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.023401
[27]
R. D. Veit, R. G. Farber, N. S. Sitaraman, T. A. A.
Arias, and S. J. Sibener, “Suppression of Nano-Hydride Growth on Nb(100) Due to Nitrogen Doping,” Journal of
Chemical Physics, vol. 152, no. 21, p. 214703, 2020, doi: 10.1063/5.0007042. [Online]. Available: http://aip.scitation.org/doi/10.1063/5.0007042
2019
[1]
N. S. Sitaraman, J. Carlson, A. R. Pack, R. D. Porter,
M. U. Liepe, M. K. Transtrum, and T. A. Arias, “Ab Initio Study of Antisite Defects in Nb3Sn: Phase
Diagram and Impact on Superconductivity,” arXiv:1912.07576 [cond-mat, physics:physics], Dec. 2019 [Online].
Available: http://arxiv.org/abs/1912.07576
[2]
R. D. Veit, “Low-Temperature Scanning Tunneling
Microscopy and Scanning Tunneling Microscopy Study of Hydrogen and Nitrogen Doped Nb(100) Crystals,” Ph.D. thesis,
University of Chicago, 2019.
[3]
A. M. Minor, P. Denes, and D. A. Muller, “Cryogenic
electron microscopy for quantum science,” MRS Bull., vol. 44, no. 12, pp. 961–966, Dec. 2019, doi: 10.1557/mrs.2019.288. [Online]. Available: https://doi.org/10.1557/mrs.2019.288
[4]
J. Mann, G. Lawler, and J. Rosenzweig, “1D Quantum
Simulations of Electron Rescattering with Metallic Nanoblades,” Instruments, vol. 3, no. 4, p. 59, Dec.
2019, doi: 10.3390/instruments3040059. [Online].
Available: https://www.mdpi.com/2410-390X/3/4/59
[5]
N. Majernik and J. Rosenzweig, “Design of Comb
Fabricated Halbach Undulators,” Instruments, vol. 3, no. 4, p. 58, Dec. 2019, doi: 10.3390/instruments3040058. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/58
[6]
G. Lawler, K. Sanwalka, Y. Zhuang, V. Yu, T. Paschen,
R. Robles, O. Williams, Y. Sakai, B. Naranjo, and J. Rosenzweig, “Electron Diagnostics for Extreme High Brightness
Nano-Blade Field Emission Cathodes,” Instruments, vol. 3, no. 4, p. 57, Dec. 2019, doi: 10.3390/instruments3040057. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/57
[7]
J. Rosenzweig, “Towards an ultra-compact x-ray
free-electron laser (Conference Presentation),” in Advances in Laboratory-based X-Ray Sources, Optics, and
Applications VII, Oct. 2019, vol. 11110, p. 1111006, doi: 10.1117/12.2531143 [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11110/1111006/Towards-an-ultra-compact-x-ray-free-electron-laser-Conference/10.1117/12.2531143.short
[8]
A. Pack and M. Transtrum, “Numerical Calculations of
the Superconducting Superheating Field within Eilenberger Theory,” in Bull. of the Am. Phys. Soc.,
Prescott, Arizona, Oct. 2019 [Online]. Available: http://meetings.aps.org/Meeting/4CS19/Session/B05.2
[9]
Y.-K. Kim, “Program at the center for bright beams to
recruit and train the next generation of scientists in accelerator and related fields,” AIP Conference
Proceedings, vol. 2160, no. 1, p. 040008, Oct. 2019, doi: 10.1063/1.5127688. [Online]. Available: https://aip.scitation.org/doi/abs/10.1063/1.5127688
[10]
R. D. Veit, N. A. Kautz, R. G. Farber, and S. J.
Sibener, “Oxygen dissolution and surface oxide reconstructions on Nb(100),” Surf. Sci., vol. 688, pp.
63–68, Oct. 2019, doi: 10.1016/j.susc.2019.06.004.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0039602819303589
[11]
R. Robles and J. Rosenzweig, “Compression of
Ultra-High Brightness Beams for a Compact X-ray Free-Electron Laser,” Instruments, vol. 3, no. 4, p. 53,
Oct. 2019, doi: 10.3390/instruments3040053. [Online].
Available: https://www.mdpi.com/2410-390X/3/4/53
[12]
N. Majernik and J. B. Rosenzweig, “Halbach undulators
using right triangular magnets,” Phys. Rev. Accel. Beams, vol. 22, no. 9, p. 092401, Sep. 2019, doi: 10.1103/PhysRevAccelBeams.22.092401. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.092401
[13]
A. Romanov, D. R. Broemmelsiek, K. Carlson, D. J.
Crawford, N. Eddy, D. R. Edstrom, J. Jarvis, V. Lebedev, S. Nagaitsev, J. Ruan, J. K. Santucci, V. Shiltsev, G.
Stancari, A. Valishev, A. Warner, Y.-K. Kim, N. Kuklev, I. Lobach, S. Chattopadhyay, and S. Szustkowki, “RECENT
RESULTS AND OPPORTUNITIES AT THE IOTA FACILITY,” in Proceedings of the 9th International Beam Instrumentation
Conf., Malmo, Sweden, Sep. 2019, vol. FERMILAB-CONF-19-675-AD [Online]. Available: https://www.osti.gov/biblio/1614724
[14]
Z. Sun, M. Liepe, J. Maniscalco, T. Oseroff, R.
Porter, D. Zhang, and X. Deng, “Fast Sn-ion transport on Nb surface for generating NbxSn thin films and XPS depth
profiling,” in Proc. NAPAC’19, Lansing, MI, Sep. 2019 [Online]. Available: https://napac2019.vrws.de/papers/weplm60.pdf
[15]
R. D. Porter, H. Hu, M. Liepe, J. Tao, N. Stilin, and
Z. Sun, “Progress in Nb3Sn SRF Cavities at Cornell University,” in Proc. NAPAC’19, Lansing, MI,
Sep. 2019 [Online]. Available: https://napac2019.vrws.de/papers/moybb3.pdf
[16]
W. H. Li, M. B. Andorf, I. V. Bazarov, L. Cultrera, C.
J. R. Duncan, A. Galdi, J. M. Maxson, and C. A. Pennington, “Ultrafast Nonlinear Photoemission from Alkali
Antimonide Photocathodes,” in Proc. NAPAC’19, Lansing, MI, Sep. 2019 [Online]. Available: https://napac2019.vrws.de/papers/moplh14.pdf
[17]
G. S. Gevorkyan, S. Karkare, I. V. Bazarov, L.
Cultrera, A. Galdi, W. H. Li, and J. M. Maxson, “Design of a 200 kV DC Cryocooled Photoemission Gun for
Photocathode Investigations,” in Proc. NAPAC’19, Sep. 2019 [Online]. Available: https://napac2019.vrws.de/papers/moplm16.pdf
[18]
A. J. Dick, P. Piot, and M. B. Andorf, “Progress
Toward a Laser Amplifier for Optical Stochastic Cooling,” in Proc. NAPAC’19, Lansing, MI, Sep. 2019
[Online]. Available: https://napac2019.vrws.de/papers/tuplm26.pdf
[19]
F.-H. Ji, J. Giner Navarro, P. Musumeci, D. Durham, A.
Minor, and D. Filippetto, “Knife-edge based measurement of the 4D transverse phase space of electron beams with
picometer-scale emittance,” Phys. Rev. Accel. Beams, vol. 22, p. 082801, Aug. 2019, doi: 10.1103/PhysRevAccelBeams.22.082801. [Online].
Available: https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.22.082801
[20]
P. Cueva, E. Padget, and D. A. Muller, “Sub-nm
Resolution, Sub-pm Precision Structure Mapping Robust to Thickness and Tilt Variations by Cepstral Analysis of
Scanning Nanodiffraction 4D-STEM,” Microsc. Microanal., vol. 25, no. S2, p. 1934, Aug. 2019, doi: 10.1017/S1431927619010407. [Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/subnm-resolution-subpm-precision-structure-mapping-robust-to-thickness-and-tilt-variations-by-cepstral-analysis-of-scanning-nanodiffraction-4dstem/CCB5F9C8DA602648803DDCD4BED06778
[21]
T. E. Oseroff, M. Liepe, B. Moeckly, M. Sowa, and Z.
Sun, “RF Characterization of Novel Superconducting Materials and Multilayers,” in Proc. SRF’19, Dresden,
Germany, Jul. 2019, doi: 10.18429/JACoW-SRF2019-THP044
[Online]. Available: https://srf2019.vrws.de/papers/thp044.pdf
[22]
T. E. Oseroff and M. Liepe, “Improvements
to the Cornell Sample Host System,” in Proc. SRF’19, Dresden, Germany, Jul. 2019,
doi: 10.18429/JACoW-SRF2019-THP045.
[23]
S. N. Lobo, M. Liepe, and T. E. Oseroff, “Magnetic
Field Mapping System for Cornell Sample Host Cavity,” in Proceedings of SRF’19, Dresden, Germany, Jul.
2019, doi: 10.18429/JACoW-SRF2019-THP046.
[24]
C. Duncan, M. B. Andorf, V. Khachatryan, C. Gulliford,
J. Maxson, D. Rubin, and I. Bazarov, “A Generic Software Platform For Rapid Prototyping of Online Cotnrol
Algorithms,” Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia, Jul.
2019, doi: 10.18429/JACoW-IPAC2019-THPRB100.
[Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/thprb100.pdf
[25]
A. Galdi, C. M. Pierce, L. Cultrera, G. Adhikari, W.
A. Schroeder, H. Paik, D. G. Schlom, J. K. Nangoi, T. A. Arias, E. Lochocki, C. Parzyck, K. M. Shen, J. M. Maxson,
and I. V. Bazarov, “Low energy photoemission from (100) Ba1−xLaxSnO3 thin films
for photocathode applications,” Eur. Phys. J. Spec. Top., vol. 228, no. 3, pp. 713–718, Jul. 2019, doi: 10.1140/epjst/e2019-800175-x. [Online]. Available: https://doi.org/10.1140/epjst/e2019-800175-x
[26]
J. Maniscalco, “Nitrogen doping, nitrogen infusion,
and niobium-3 tin: recent challenges and advances in fundamental SRF accelerator physics,” Joint Cryogenic
Engineering Conference and International Cryogenic Materials Conference (CEC-ICMC), Hartford, CT, Jul. 2019.
[27]
Z. Sun, M. Liepe, T. Oseroff, R. Porter, T. A. Arias,
N. Sitamaran, K. Dobson, X. Deng, A. Connolly, J. Scholtz, and M. Thompson, “Electroplating of Sn film on Nb
substrate for generating Nb3Sn thin films and post laser annealing,” in Proc. SRF’19, Dresden,
Germany, Jun. 2019, doi: 10.18429/JACoW-SRF2019-MOP014.
[28]
N. Sitaraman, T. A. Arias, R. G. Farber, M. Liepe, J.
Maniscalco, S. J. Sibener, and R. D. Veit, “Ab Initio Calculations on Impurity Doped Niobium and Niobium
Surfaces,” in Proc. SRF’19, Dresden, Germany, Jun. 2019, doi: 10.18429/JACoW-SRF2019-TUP045.
[29]
J. Maniscalco, M. Ge, P. N. Koufalis, M. Liepe, T. A.
Arias, D. B. Liarte, J. P. Sethna, and N. Sitaraman, “The Field-Dependent Surface Resistance of Doped Niobium: New
Experimental and Theoretical Results,” in Proc. SRF’19, Jun. 2019, doi: doi:10.18429/JACoW-SRF2019-TUFUA1 [Online].
Available: http://accelconf.web.cern.ch/AccelConf/srf2019/papers/tufua1.pdf
[30]
J. T. Maniscalco, T. Gruber, A. T. Holic, and M.
Liepe, “Progress Towards Commissioning the Cornell DC Field Dependence Cavity,” in Proc. of SRF’19,
Dresden, Germany, Jun. 2019, doi: doi:10.18429/JACoW-SRF2019-TUP051 [Online].
Available: http://accelconf.web.cern.ch/AccelConf/srf2019/papers/tup051.pdf
[31]
O. Chubenko, S. S. Baturin, and S. V. Baryshev,
“Theoretical evaluation of electronic density-of-states and transport effects on field emission from n-type
ultrananocrystalline diamond films,” Journal of Applied Physics, vol. 125, no. 20, p. 205303, May 2019,
doi: 10.1063/1.5085679. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5085679
[32]
S. Keckert, T. Buck, D. Hall, J. Knobloch, P. Kolb, O.
Kugeler, R. Laxdal, M. Liepe, S. Posen, T. Prokscha, Z. Salman, A. Suter, and T. Junginger, “Critical Fields of
Nb3Sn Prepared for Superconducting Cavities,” Supercond. Sci. Technol., vol. 32, no. 7, p.
075004, May 2019, doi: 10.1088/1361-6668/ab119e. [Online].
Available: https://doi.org/10.1088/1361-6668/ab119e
[33]
F. H. Ji, D. Durham, A. Minor, P. Musumeci, J.
Navarro, and D. Filippetto, “Ultrafast Relativistic Electron Nanoprobes,” Nat. Commun., vol. 2, no. 1, p.
54, May 2019, doi: 10.1038/s42005-019-0154-4. [Online].
Available: https://www.nature.com/articles/s42005-019-0154-4
[34]
M. Liepe, “Superconducting RF for the Future: Is
Nb3Sn Ready for Next-generation Accelerators?,” in Proc. IPAC2019, Melbourne, Australia, May
2019 [Online]. Available: https://accelconf.web.cern.ch/ipac2019/talks/tuxplm1_talk.pdf
[35]
L. Gupta, S. Baturin, S. Nagaitsev, and Y.-K. Kim,
“Study of Integrable and Quasi-Integrable Sextupole Lattice,” Proceedings of the 10th Int. Particle Accelerator
Conf., IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-MOPGW107. [Online].
Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/mopgw107.pdf
[36]
W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, and D.
L. Rubin, “Applications of Dimension-Reduction to Various Accelerator Physics Problems,” in Proc. IPAC2019,
Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-THPRB099 [Online].
Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/thprb099.pdf
[37]
S. R. Xie, G. R. Stewart, J. J. Hamlin, P. J.
Hirschfeld, and R. G. Hennig, “Functional Form of the Superconducting Critical Temperature from Machine Learning,”
arXiv:1905.06780 [cond-mat], May 2019 [Online]. Available: http://arxiv.org/abs/1905.06780
[38]
W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, D. B.
Liarte, D. L. Rubin, and J. P. Sethna, “Online storage ring optimization using dimension-reduction and genetic
algorithms,” Phys. Rev. Accel. Beams, vol. 22, no. 5, p. 054601, May 2019, doi: 10.1103/PhysRevAccelBeams.22.054601. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.054601
[39]
D. H. Koh and S. S. Baturin, “Analytic model of 3D
beam dynamics in a wakefield device,” NIM A, vol. 925, pp. 128–132, May 2019, doi: 10.1016/j.nima.2019.02.016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900219301913
[40]
S. Karkare, J. Feng, J. Maxson, and H. A. Padmore,
“Development of a 3-D energy-momentum analyzer for meV-scale energy electrons,” Rev. of Sci. Instr., vol.
90, no. 5, p. 053902, May 2019, doi: 10.1063/1.5091683. [Online].
Available: https://aip.scitation.org/doi/10.1063/1.5091683
[41]
J. T. Maniscalco, M. Liepe, T. A. Arias, D. B. Liarte,
J. P. Sethna, and N. Sitaraman, “Theoretical Analysis of Quasiparticle Overheating, Positive Q-Slope, and Vortex
Losses in SRF Cavities,” in Proc. IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-WEPRB089 [Online].
Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/weprb089.pdf
[42]
N. Kuklev, Y.-K. Kim, S. Nagaitsev, A. Romanov, and A.
Valishev, “Experimental Demonstration of the Henon-Heiles Quasi-Integrable System of IOTA,” in Proc.
IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-MOPGW113 [Online].
Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/mopgw113.pdf
[43]
N. Kuklev, Y.-K. Kim, J. Jarvis, A. L. Romanov, J. K.
Santucci, and G. Stancari, “Synchrotron Radiation Beam Diagnostics at IOTA-Commissioning Performance and Upgrade
Efforts,” in Proc. of IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-WEPGW103 [Online].
Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/wepgw103.pdf
[44]
J. K. Nangoi, “Ab initio theory and calculations of
many-body effects in photoemission from semiconductor surfaces: Cs3Sb as a case study,” Boston, MA,
Mar. 04, 2019 [Online]. Available: https://meetings.aps.org/Meeting/MAR19/Session/P33.7
[45]
C. B. Clement, M. Bierbaum, and J. Sethna, “Image
registration and super resolution from first principles,” arXiv:1809.05583 [physics], Feb. 2019 [Online].
Available: https://arxiv.org/pdf/1809.05583.pdf
[46]
J. B. Rosenzweig, A. Cahill, V. Dolgashev, C. Emma, A.
Fukasawa, R. Li, C. Limborg, J. Maxson, P. Musumeci, A. Nause, R. Pakter, R. Pompili, R. Roussel, B. Spataro, and
S. Tantawi, “Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode
sources,” Phys. Rev. Accel. Beams, vol. 22, no. 2, p. 023403, Feb. 2019, doi: 10.1103/PhysRevAccelBeams.22.023403. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.023403
[47]
J. Maniscalco, “Studies of the Field-Dependent Surface
Resistance of Nitrogen-Doped Niobium for Superconducting Accelerators,” Ph.D. thesis, Cornell University, 2019
[Online]. Available: https://www.classe.cornell.edu/rsrc/Home/Research/SRF/SrfDissertations/James_thesis_final.pdf
[48]
M. Hu, M. Liepe, and R. D. Porter, “Reducing Surface
Roughness of Nb3Sn Through Chemical Polishing Treatments,” in Proc. SRF’19, Dresden, Germany,
2019, doi: 10.18429/JACoW-SRF2019-MOP013 [Online].
Available: https://srf2019.vrws.de/papers/mop013.pdf
[49]
M. Gordon, Y.-K. Kim, and J. M. Maxson, “The Effects
of Stochastic Space Charge in High Brightness Photoelectron Beamlines for Ultrafast Electron Diffraction,” in
Proc. IPAC2019, Melbourne, Australia, 2019, vol. IPAC2019, doi: 10.18429/jacow-ipac2019-wepts069 [Online].
Available: http://jacow.org/ipac2019/doi/JACoW-IPAC2019-WEPTS069.html
[50]
R. G. Farber, R. D. Veit, N. S. Sitaraman, T. A.
Arias, and S. J. Sibener, “Nano-Scale Characterization of the Growth and Suppression Behavior of Niobium Hydrides
for Next Generation Superconducting RF Accelerators and Light Sources,” in Program of the AVS Prairie Chapter
Symposium, Champaign, IL, 2019, p. p.27 [Online]. Available: https://avs.mrl.illinois.edu/files/2019/09/AVSPCSE2019-Program-final.pdf
[51]
S. Baturin, T. Nikhar, and S. Baryshev, “Field
electron emission induced glow discharge in nanodiamond vacuum diode,” J. Phys. D: Appl. Phys., 2019, doi:
10.1088/1361-6463/ab2183. [Online]. Available: http://iopscience.iop.org/10.1088/1361-6463/ab2183
2018
[1]
J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H.
Padmore, and J. Maxson, “Brightness of femtosecond nonequilibrium photoemission in metallic photocathodes at
wavelengths near the photoemission threshold,” Jour. Appl. Phys., vol. 124, no. 24, p. 244903, Dec. 2018,
doi: 10.1063/1.5053082. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5053082
[2]
S. S. Baturin, G. Andonian, and J. B. Rosenzweig,
“Analytical treatment of the wakefields driven by transversely shaped beams in a planar slow-wave structure,”
Phys. Rev. Accel. Beams, vol. 21, no. 12, p. 121302, Dec. 2018, doi: 10.1103/PhysRevAccelBeams.21.121302. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.121302
[3]
A. Bernstein and R. Rand, “Delay-Coupled Mathieu
Equations in Synchrotron Dynamics Revisited: Delay Terms in the Slow Flow,” Journal of Applied Nonlinear
Dynamics, vol. 7, pp. 349–360, Dec. 2018, doi: 10.5890/JAND.2018.12.003. [Online]. Available: https://doi.org/10.5890/JAND.2018.12.003
[4]
D. B. Liarte, D. Hall, P. N. Koufalis, A. Miyazaki, A.
Senanian, M. Liepe, and J. P. Sethna, “Vortex dynamics and losses due to pinning: Dissipation from trapped
magnetic flux in resonant superconducting radio-frequency cavities,” Phys. Rev. Applied, vol. 10, p.
054057, Nov. 2018, doi: 10.1103/PhysRevApplied.10.054057. [Online].
Available: http://arxiv.org/abs/1808.01293
[5]
J. B. Rosenzweig, A. Cahill, B. Carlsten, G.
Castorina, M. Croia, C. Emma, A. Fukusawa, B. Spataro, D. Alesini, V. Dolgashev, M. Ferrario, G. Lawler, R. Li, C.
Limborg, J. Maxson, P. Musumeci, R. Pompili, S. Tantawi, and O. Williams, “Ultra-high brightness electron beams
from very-high field cryogenic radiofrequency photocathode sources,” NIM A, vol. 909, pp. 224–228, Nov.
2018, doi: 10.1016/j.nima.2018.01.061. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0168900218300780
[6]
P. Musumeci, J. Giner Navarro, J. B. Rosenzweig, L.
Cultrera, I. Bazarov, J. Maxson, S. Karkare, and H. Padmore, “Advances in bright electron sources,” NIM A,
vol. 907, p. 209, Nov. 2018, doi: 10.1016/j.nima.2018.03.019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900218303541
[7]
A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, S. G.
Tantawi, and S. Weathersby, “High gradient experiments with X-band cryogenic copper accelerating cavities,”
Phys. Rev. Accel. Beams, vol. 21, no. 10, p. 102002, Oct. 2018, doi: 10.1103/PhysRevAccelBeams.21.102002. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102002
[8]
D. Marx, J. Giner Navarro, D. Cesar, J. Maxson, B.
Marchetti, R. Assmann, and P. Musumeci, “Single-shot reconstruction of core 4D phase space of high-brightness
electron beams using metal grids,” Phys. Rev. Accel. Beams, vol. 21, no. 10, p. 102802, Oct. 2018, doi: 10.1103/PhysRevAccelBeams.21.102802. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102802
[9]
S. Karkare, “Less than 10 meV MTE from Cu,” Santa Fe,
NM, Oct. 2018 [Online]. Available: https://indico.cern.ch/event/759878/contributions/3151738/
[10]
G. Gevorkyan, S. Karkare, S. Emamian, I. V. Bazarov,
and H. A. Padmore, “Effects of physical and chemical surface roughness on the brightness of electron beams from
photocathodes,” Phys. Rev. Accel. Beams, vol. 21, no. 9, p. 093401, Sep. 2018, doi: 10.1103/PhysRevAccelBeams.21.093401. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.093401
[11]
B. H. Savitzky, I. El Baggari, C. B. Clement, E.
Waite, B. H. Goodge, D. J. Baek, J. P. Sheckelton, C. Pasco, H. Nair, N. J. Schreiber, J. Hoffman, A. S. Admasu,
J. Kim, S.-W. Cheong, A. Bhattacharya, D. G. Schlom, T. M. McQueen, R. Hovden, and L. F. Kourkoutis, “Image
registration of low signal-to-noise cryo-STEM data,” Ultramicroscopy, vol. 191, pp. 56–65, Aug. 2018, doi:
10.1016/j.ultramic.2018.04.008. [Online]. Available:
https://doi.org/10.1016/j.ultramic.2018.04.008
[12]
R. Porter, T. Arias, P. Cueva, D. Hall, M. Liepe, J.
Maniscalco, D. Muller, and N. Sitaraman, “Next Generation Nb3Sn SRF Cavities for Linear Accelerators,”
Proceedings of the 29th Linear Accelerator Conference, Beijing, China, pp. 462–465, Aug. 2018, doi: 10.18429/JACoW-LINAC2018-TUPO055. [Online].
Available: http://accelconf.web.cern.ch/AccelConf/linac2018/doi/JACoW-LINAC2018-TUPO055.html
[13]
J. T. Maniscalco, P. N. Koufalis, and M. Liepe,
“Fundamental Studies of Impurity Doping in 1.3 GHz And Higher Frequency SRF Cavities,” in Proc. of
LINAC2018, Beijing, China, Aug. 2018, doi: doi: 10.18429/JACoW-LINAC2018-TUPO054 [Online].
Available: http://linac2018.vrws.de/papers/tupo054.pdf
[14]
P. Cueva, E. Padget, and D. A. Muller, “A Natural
Basis for Unsupervised Machine Learning on Scanning Diffraction Data,” Microsc. Microanal., vol. 24, no.
S1, p. 490, Aug. 2018, doi: 10.1017/S1431927618002945.
[Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/natural-basis-for-unsupervised-machine-learning-on-scanning-diffraction-data/2B90D32767DC3A0C7714826758A2FC05
[15]
A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, Z.
Li, S. G. Tantawi, and S. Weathersby, “rf losses in a high gradient cryogenic copper cavity,” Phys. Rev. Accel.
Beams, vol. 21, no. 6, p. 061301, Jun. 2018, doi: 10.1103/PhysRevAccelBeams.21.061301. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.061301
[16]
L. Gupta, S. Baturin, Y.-K. Kim, and S. Nagaitsev,
“Design of a One-Dimensional Sextupole Using Semi-Analytic Methods,” Proceedings of the 9th Int. Particle
Accelerator Conf., IPAC2018, Vancouver, BC, Canada, Jun. 2018, doi: 10.18429/JACoW-IPAC2018-THPAF070. [Online].
Available: http://accelconf.web.cern.ch/AccelConf/ipac2018/doi/JACoW-IPAC2018-THPAF070.html
[17]
S. S. Baturin and A. Zholents, “Stability condition
for the drive bunch in a collinear wakefield accelerator,” Phys. Rev. Accel. Beams, vol. 21, no. 3, p.
031301, Mar. 2018, doi: 10.1103/PhysRevAccelBeams.21.031301. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.031301
[18]
J. Ding, D. Hall, and M. Liepe, “Simulations of RF
Field-induced Thermal Feedback in Niobium and Nb3Sn Cavities,” in Proc. SRF’17, Lanzhou, China,
Jan. 2018, doi: 10.18429/JACoW-SRF2017-THPB079
[Online]. Available: https://doi.org/10.18429/JACoW-SRF2017-THPB079
[19]
A. Zholents, S. Baturin, D. Doran, W. Jansma, M. Kasa,
R. Kustom, H. Perez, J. Power, N. Strelnikov, K. Suthar, E. Trakhtenberg, I. Vasserman, G. Waldschmidt, and J. Xu,
“A Conceptual Design of a Compact Wakefield Accelerator for a High Repetition Rate Multi User X-ray Free-Electron
Laser Facility,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada,
2018, doi: 10.18429/jacow-ipac2018-tupmf010.
[Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupmf010
[20]
R. Porter, M. Liepe, J. Maniscalco, and R. Strauss,
“Update on Sample Host Cavity Design Work for Measuring Flux Entry and Quench Field,” Proceedings of the 18th
Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb044. [Online]. Available:
http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB044.html
[21]
R. Porter, F. Furuta, D. Hall, M. Liepe, and J.
Maniscalco, “Effects of Chemical Treatments on the Surface Roughess and Surface Magnetic Field Ehancement of
Nb3Sn Films for Superconducting Radio-Frequency Cavities,” in Proc. SRF’17, Lanzhou, China,
2018, doi: 10.18429/jacow-srf2017-thpb043 [Online].
Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB043.html
[22]
R. Porter, T. A. Arias, P. Cueva, J. Ding, D. Hall, M.
Liepe, D. A. Muller, and N. Sitaraman, “Update on Nb3Sn Progress at Cornell University,” in Proc.
IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf050 [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-wepmf050
[23]
C. Pierce, S. Baturin, I. Bazarov, M. Gordon, C.
Gulliford, Y.-K. Kim, and J. Maxson, “Understanding and Compensating Emittance Diluting Effects in Highly
Optimized Ultrafast Electron Diffraction Beamlines,” Proceedings of the 9th Int. Particle Accelerator Conf.,
IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpaf024. [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-thpaf024
[24]
J. Paul, I. V. Bazarov, A. Galdi, R. Hennig, S.
Karkare, and H. Padmore, “Computational Screening for Low Emittance Photocathodes,” in Proc. IPAC2018,
Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpml053 [Online].
Available: http://accelconf.web.cern.ch/AccelConf/ipac2018/papers/thpml053.pdf
[25]
T. Oseroff, D. Hall, M. Liepe, and J. Maniscalco,
“High-frequency SRF Cavities,” in Proc. of SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-tupb009 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-TUPB009.html
[26]
T. Oseroff, M. Ge, M. Liepe, J. Maniscalco, S. McNeal,
R. Porter, and M. Sowa, “Performance of Samples with Novel SRF Materials and Growth Techniques,” in Proc.
IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf047 [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-wepmf047
[27]
J. K. Nangoi, T. A. Arias, S. Karkare, H. Padmore, and
A. Schroeder, “The Role of Electron-Phonon Scattering in Transverse Momentum Conservation in PbTe(111)
Photocathodes,” in Proc. IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/JACoW-IPAC2018-TUPMF065 [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2018-TUPMF065
[28]
J. Maniscalco and M. Liepe, “Updates on the DC Field
Dependence Cavity,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC,
Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf044. [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-wepmf044
[29]
J. Maniscalco and M. Liepe, “A Computational Method
for More Accurate Measurements of the Surface Resistance in SRF Cavities,” Proceedings of the 9th Int. Particle
Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf042. [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-wepmf042
[30]
J. Maniscalco, P. Koufalis, and M. Liepe, “Modeling of
the Frequency and Field Dependence of the Surface Resistance of Impurity-Doped Niobium,” Proceedings of the 9th
Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf046. [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2018-WEPMF046
[31]
J. Maniscalco, M. Liepe, and R. Porter, “Design
Updates on Cavity to Measure Suppression of Microwave Surface Resistance by DC Magnetic Fields,” in Proc.
SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb005 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB005.html
[32]
D. Liarte, T. Arias, D. Hall, M. Liepe, A. Pack, J.
Sethna, N. Sitamaran, and M. Transtrum, “SRF Theory Developments from the Center for Bright Beams,” Proceedings
of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb040. [Online]. Available:
http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB040.html
[33]
W. Li, I. Bazarov, C. Gulliford, and J. Maxson, “Novel
Photocathode Geometry Optimization: Field Enhancing Photoemission Tips,” Proceedings of the 9th Int. Particle
Accelerator Conf., IPAC2018, Vancouver, BC, Canada, p. TUPML029, 2018, doi: 10.18429/jacow-ipac2018-tupml029. [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-tupml029
[34]
S. Karkare, I. Bazarov, S. Emamian, A. Galdi, G.
Gevorkyan, H. Padmore, and A. Schmid, “Physical and Chemical Roughness of Alkali-Animonide Cathodes,”
Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpmf080. [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-thpmf080
[35]
D. Hall, P. Cueva, D. Liarte, M. Liepe, D. Muller, R.
Porter, and J. Sethna, “Cavity Quench Studies in Nb3Sn Using Temperature Mapping and Surface Analysis
of Cavity Cut-outs,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China,
2018, doi: 10.18429/jacow-srf2017-thpb041. [Online].
Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB041.html
[36]
D. Hall, D. Liarte, M. Liepe, R. Porter, and J.
Sethna, “Field-dependence of the Sensitivity to Trapped Flux in Nb3Sn,” in Proc. SRF’17,
Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb042 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB042.html
[37]
D. Hall, T. A. Arias, P. Cueva, D. Liarte, M. Liepe,
D. Muller, R. Porter, J. Sethna, and M. Sitaraman, “High Performance Nb3Sn Cavities,” in Proc.
SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-wexa01 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-WEXA01.html
[38]
L. Gupta, S. Baturin, M. Ehrlichman, Y.-K. Kim, J.
Maxson, R. Meller, D. Rubin, D. Sagan, and J. Shanks, “Beam-Based Sextupolar Nonlinearity Mapping in CESR,”
Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpak137. [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-thpak137
[39]
J. Giner Navarro, R. Assmann, D. Cesar, B. Marchetti,
D. Marx, and P. Musumeci, “Electron Microscopy Inspired Setup for Single-Shot 4-D Trace Space Reconstruction of
Bright Electron Beams,” in Proc. IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpml106 [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-thpml106
[40]
A. Galdi, G. Adhikari, I. Bazarov, L. Cultrera, W. Li,
E. Lochocki, J. Maxson, H. Paik, C. Parzyck, C. Pierce, D. Schlom, A. Schroeder, and K. Shen, “Barium Tin Oxide
Ordered Photocathodes: First Measurements and Future Perspectives,” in Proc. 9th Int. Particle Accel. Conf.,
IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupml027 [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-tupml027
[41]
L. Cultrera, J. Bae, A. C. Bartnik, I. V. Bazarov, R.
Doane, A. Galdi, C. M. Gulliford, W. H. Li, J. M. Maxson, S. A. McBride, T. P. Moore, C. M. Pierce, C. Xu, and C.
University, “Photocathodes R&D for High Brightness and Highly Polarized Electron Beams at Cornell University,”
Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/JACoW-IPAC2018-TUPML028. [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2018-TUPML028
[42]
N. Bell and L. Phillips, “Generation of Flat Ultra-Low
Emittance Beams,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada,
2018, doi: 10.18429/jacow-ipac2018-thpak072.
[Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpak072
[43]
J. K. Bae, I. Bazarov, L. Cultrera, S. Karkare, J.
Maxson, P. Musumeci, H. Padmore, and X. Shen, “Multi-photon Photoemission and Ultrafast Electron Heating in Cu
Photocathodes at Threshold,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC,
Canada, 2018, doi: 10.18429/jacow-ipac2018-tupml026. [Online].
Available: https://doi.org/10.18429/jacow-ipac2018-tupml026
2017
[1]
Z. Ding, S. Karkare, J. Feng, D. Filippetto, M.
Johnson, S. Virostek, F. Sannibale, J. Nasiatka, M. Gaowei, J. Sihsheimer, E. Muller, J. Smedley, and H. Padmore,
“Temperature-dependent quantum efficiency degradation of K-Cs-Sb bialkali antimonide photocathodes grown by a
triple-element codeposition method,” Phys. Rev. Accel. Beams, vol. 20, no. 11, p. 113401, Nov. 2017, doi:
10.1103/PhysRevAccelBeams.20.113401. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.113401
[2]
D. A. Dimitrov, G. I. Bell, J. Smedley, I. Ben-Zvi, J.
Feng, S. Karkare, and H. A. Padmore, “Modeling quantum yield, emittance, and surface roughness effects from
metallic photocathodes,” Jour. Appl. Phys., vol. 122, no. 16, p. 165303, Oct. 2017, doi: 10.1063/1.4996568. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.4996568
[3]
S. S. Baturin, A. V. Zinovev, and S. V. Baryshev,
“Current Saturation in Nonmetallic Field Emitters,” arXiv:1710.03692 [cond-mat, physics:physics], Oct.
2017, doi: http://arxiv.org/abs/1710.03692. [Online]. Available: http://arxiv.org/abs/1710.03692
[4]
O. Chubenko, S. S. Baturin, K. K. Kovi, A. V. Sumant,
and S. V. Baryshev, “Locally Resolved Electron Emission Area and Unified View of Field Emission from
Ultrananocrystalline Diamond Films,” ACS Appl Mater Interfaces, vol. 9, no. 38, pp. 33229–33237, Sep. 2017,
doi: 10.1021/acsami.7b07062. [Online]. Available: https://doi.org/10.1021/acsami.7b07062
[5]
A. Raju, S. Choudhury, D. L. Rubin, A. Wilkinson, and
J. P. Sethna, “Finding stability domains and escape rates in kicked Hamiltonians,” arXiv:1707.09336 [cond-mat,
physics:physics], Jul. 2017 [Online]. Available: http://arxiv.org/abs/1707.09336
[6]
O. Chubenko, S. Baturin, A. Sumant, A. Zinovev, K. K.
Kovi, and S. Baryshev, “Field emission microscopy of ultra-nano-crystalline diamond films,” Proceedings of the
30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jul. 2017, doi: 10.1109/IVNC.2017.8051543. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051543
[7]
O. Chubenko, A. Afanasev, S. S. Baturin, and S. V.
Baryshev, “Locally resolved field emission area and its effect on resulting j-E characteristics: Case study for
planar thin film ultrananocrystalline diamond field emitters,” Proceedings of the 30th International Vacuum
Nanoelectronics Conference (IVNC), Regensburg, Germany, Jul. 2017, doi: 10.1109/IVNC.2017.8051647. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051647
[8]
S. S. Baturin and A. Zholents, “Upper limit for the
accelerating gradient in the collinear wakefield accelerator as a function of the transformer ratio,” Phys.
Rev. Accel. Beams, vol. 20, no. 6, p. 061302, Jun. 2017, doi: 10.1103/PhysRevAccelBeams.20.061302. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.061302
[9]
S. Baturin, A. Zinovev, and S. Baryshev, “Vacuum
Effect on Field Emission I-V curves,” Proceedings of the 30th International Vacuum Nanoelectronics Conference
(IVNC), Regensburg, Germany, Jun. 2017, doi: 10.1109/IVNC.2017.8051638. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051638
[10]
P. Gupta, L. Cultrera, and I. Bazarov, “Monte Carlo
simulations of electron photoemission from cesium antimonide,” Journal of Applied Physics, vol. 121, no.
21, p. 215702, Jun. 2017, doi: 10.1063/1.4984263. [Online].
Available: http://aip.scitation.org/doi/10.1063/1.4984263.
[Accessed: Jan. 16, 2018]
[11]
Y. Sakai, I. Gadjev, P. Hoang, N. Majernik, A. Nause,
A. Fukasawa, O. Williams, M. Fedurin, B. Malone, C. Swinson, K. Kusche, M. Polyanskiy, M. Babzien, M. Montemagno,
Z. Zhong, P. Siddons, I. Pogorelsky, V. Yakimenko, T. Kumita, Y. Kamiya, and J. B. Rosenzweig, “Single shot,
double differential spectral measurements of inverse Compton scattering in the nonlinear regime,” Phys. Rev.
Accel. Beams, vol. 20, no. 6, p. 060701, Jun. 2017, doi: 10.1103/PhysRevAccelBeams.20.060701. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.060701
[12]
R. Porter, M. Liepe, J. Maniscalco, and V.
Veshcherevich, “Sample Host Cavity Design for Measuring Flux Entry and Quench,” Proceedings of the 9th Int.
Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA126. [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA126
[13]
J. Maniscalco, F. Furuta, D. Hall, P. Koufalis, and M.
Liepe, “Analysis of Mean Free Path and Field Dependent Surface Resistance,” Proceedings of the 9th Int.
Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-WEPVA145. [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2017-WEPVA145
[14]
J. Maniscalco, V. Arrieta, D. Hall, M. Liepe, S.
McNeal, R. Porter, and B. Williams, “Cornell Sample Host Cavity: Recent Results,” Proceedings of the 9th Int.
Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA123. [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA123
[15]
D. Hall, D. Liarte, M. Liepe, and J. Sethna, “Impact
of Trapped Magnetic Flux and Thermal Gradients on the Performance of Nb3Sn Cavities,” Proceedings of
the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA118. [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA118
[16]
D. Hall, T. Arias, P. Cueva, M. Liepe, J. Maniscalco,
D. Muller, R. Porter, and N. Sitaraman, “Surface Analysis of Features Seen on Nb3Sn Sample Coupons
Grown by Vapour Diffusion,” in Proc. of IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA119 [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA119
[17]
D. Hall, P. Cueva, D. Liarte, M. Liepe, J. Maniscalco,
D. Muller, R. Porter, and J. Sethna, “Quench Studies in Single-Cell Nb3Sn Cavities Coated Using Vapour
Diffusion,” in Proc. IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA116 [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA116
[18]
A. Cahill, A. Fukasawa, C. Limborg, W. Qin, and J.
Rosenzweig, “Optimization of Beam Dynamics for an S-Band Ultra-High Gradient Photoinjector,” Proceedings of the
9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-TUPAB129. [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2017-TUPAB129
[19]
A. Cahill, V. Dolgashev, J. Rosenzweig, S. Tantawi,
and S. Weathersby, “Ultra High Gradient Breakdown Rates in X-Band Cryogenic Normal Conducting Rf Accelerating
Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017,
doi: 10.18429/JACoW-IPAC2017-THPIK125. [Online].
Available: https://doi.org/10.18429/JACoW-IPAC2017-THPIK125
[20]
M. Ashton, J. Paul, S. B. Sinnott, and R. G. Hennig,
“Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials,” Phys. Rev. Lett.,
vol. 118, no. 10, p. 106101, Mar. 2017, doi: 10.1103/PhysRevLett.118.106101. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.118.106101
[21]
S. S. Baturin and S. V. Baryshev, “Electron emission
projection imager,” Review of Scientific Instruments, vol. 88, no. 3, p. 033701, Mar. 2017, doi: 10.1063/1.4977472. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/1.4977472
[22]
J. T. Maniscalco, D. Gonnella, and M. Liepe, “The
importance of the electron mean free path for superconducting radio-frequency cavities,” Jour. Appl. Phys.,
vol. 121, no. 4, p. 043910, Jan. 2017, doi: 10.1063/1.4974909.
[Online]. Available: https://aip.scitation.org/doi/full/10.1063/1.4974909
[23]
R. D. Porter, F. Furuta, D. L. Hall, M. Liepe, J. T.
Maniscalco, and C. University, “Effectiveness of Chemical Treatments for Reducing the Surface Roughness of
Nb3Sn,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark,
2017, doi: 10.18429/JACoW-IPAC2017-MOPVA124.
[Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA124
[24]
J. T. Paul, A. K. Singh, Z. Dong, H. Zhuang, B. C.
Revard, B. Rijal, M. Ashton, A. Linscheid, M. Blonsky, D. Gluhovic, J Guo, and R. G. Hennig, “Computational
methods for 2D materials: discovery, property characterization, and application design,” J. Phys.: Condens.
Matter, vol. 29, no. 47, p. 473001, 2017, doi: 10.1088/1361-648X/aa9305. [Online]. Available: http://stacks.iop.org/0953-8984/29/i=47/a=473001
[25]
D. B. Liarte, S. Posen, M. K. Transtrum, G. Catelani,
M. Liepe, and J. P. Sethna, “Theoretical estimates of maximum fields in superconducting resonant radio frequency
cavities: stability theory, disorder, and laminates,” Supercond. Sci. Technol., vol. 30, no. 3, p. 033002,
2017, doi: 10.1088/1361-6668/30/3/033002. [Online].
Available: http://stacks.iop.org/0953-2048/30/i=3/a=033002
2016
[1]
D. B. Liarte, M. K. Transtrum, and J. P. Sethna,
“Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors,” Phys. Rev. B,
vol. 94, no. 14, p. 144504, Oct. 2016, doi: 10.1103/PhysRevB.94.144504. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.94.144504
Pre-award Publications
[1]
A. Bernstein and R. Rand, “Delay-Coupled Mathieu
Equations in Synchrotron Dynamics Revisited: Delay Terms in the Slow Flow,” Journal of Applied Nonlinear
Dynamics, vol. 7, pp. 349–360, Dec. 2018, doi: 10.5890/JAND.2018.12.003. [Online]. Available: https://doi.org/10.5890/JAND.2018.12.003