Skip to main content

The Center for Bright Beams, A National Science Foundation Science and Technology Center

Publications

Publications by Year


2021

[1]
Porter, Ryan, “9th International Workshop on Thin Films and New Ideas in Pushing the Limits of RF Superconductivity.”
[2]
C. Zhang, Z. Baraissov, C. Duncan, A. Hanuka, A. Edelen, J. Maxson, and D. Muller, “Aberration Corrector Tuning with Machine-Learning-Based Emittance Measurements and Bayesian Optimization,” Microscopy and Microanalysis, vol. 27, no. S1, pp. 810–812, Aug. 2021, doi: 10.1017/S1431927621003214. [Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/aberration-corrector-tuning-with-machinelearningbased-emittance-measurements-and-bayesian-optimization/D89FA657D93568EE0A1DC768248FDFC0
[3]
S. T. Wang, M. B. Andorf, I. V. Bazarov, W. F. Bergan, V. Khachatryan, J. M. Maxson, and D. L. Rubin, “Simulation of transit-time optical stochastic cooling process in Cornell Electron Storage Ring,” arXiv:2103.16419 [physics], Mar. 2021 [Online]. Available: http://arxiv.org/abs/2103.16419
[4]
Z. Sun, M. Ge, M. Liepe, T. Oseroff, R. D. Porter, A. Connolly, and M. Thompson, “Surface Roughness Reduction of Nb3Sn Thin Films via Laser Annealing for Superconducting Radio-Frequency Cavities,” in IPAC 2021, Virtual, 2021.
[5]
Z. Sun, “Study of alternative materials for next generation SRF cavities at Cornell University,” Jefferson Laboratory, Newport News, VA, 15-Mar-2021.
[6]
N. S. Sitaraman, M. M. Kelley, R. D. Porter, M. U. Liepe, T. A. Arias, J. Carlson, A. R. Pack, M. K. Transtrum, and R. Sundararaman, “Effect of the density of states at the Fermi level on defect free energies and superconductivity: A case study of Nb3Sn,” Phys. Rev. B, vol. 103, no. 11, p. 115106, Mar. 2021, doi: 10.1103/PhysRevB.103.115106. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.103.115106
[7]
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto, “Demonstration of adaptive machine learning-based distribution tracking on a compact accelerator: Towards enabling model-based 6D non-invasive beam diagnostics,” arXiv:2102.10510 [physics], Feb. 2021 [Online]. Available: http://arxiv.org/abs/2102.10510
[8]
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto, “An adaptive approach to machine learning for compact particle accelerators,” Sci Rep, vol. 11, no. 1, p. 19187, Sep. 2021, doi: 10.1038/s41598-021-98785-0. [Online]. Available: https://www.nature.com/articles/s41598-021-98785-0
[9]
P. Saha, O. Chubenko, G. Gevorkyan, A. Kachwala, S. Karkare, C. Knill, E. Montgomery, H. Padmore, and S. Poddar, “Optical and Surface Characterization of Alkali-Antimonide Photocathodes,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.591 MB, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB142. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB142.html
[10]
Roussel, Ryan, Hanuka, Adi, and Edelen, Auralee, “Multi-Objective Bayesian Optimization for Online Accelerator Tuning,” in Bulletin of the American Physical Society, 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/E15.7
[11]
R. Roussel, A. Hanuka, and A. Edelen, “Multiobjective Bayesian optimization for online accelerator tuning,” Phys. Rev. Accel. Beams, vol. 24, no. 6, p. 062801, Jun. 2021, doi: 10.1103/PhysRevAccelBeams.24.062801. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.062801
[12]
R. Roussel and A. Hanuka, “Towards Hysteresis Aware Bayesian Regression and Optimization,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.556 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB289. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB289.html
[13]
R. Roussel, J. P. Gonzalez-Aguilera, Y.-K. Kim, E. Wisniewski, W. Liu, P. Piot, J. Power, A. Hanuka, and A. Edelen, “Turn-Key Constrained Parameter Space Exploration for Particle Accelerators Using Bayesian Active Learning,” arXiv:2106.09202 [physics], Jun. 2021 [Online]. Available: http://arxiv.org/abs/2106.09202
[14]
R. R. Robles, O. Camacho, A. Fukasawa, N. Majernik, and J. B. Rosenzweig, “Versatile, High Brightness, Cryogenic Photoinjector Electron Source,” arXiv:2103.08789 [physics], Mar. 2021 [Online]. Available: http://arxiv.org/abs/2103.08789
[15]
T. Y. Posos, O. Chubenko, and S. V. Baryshev, “Confirmation of Transit-Time Limited Field Emission in Advanced Carbon Materials with Fast Pattern Recognition Algorithm,” arXiv:2108.07440 [physics], Aug. 2021 [Online]. Available: http://arxiv.org/abs/2108.07440
[16]
C. M. Pierce, J. K. Bae, A. Galdi, L. Cultrera, I. Bazarov, and J. Maxson, “Beam brightness from Cs–Te near the photoemission threshold,” Appl. Phys. Lett., vol. 118, no. 12, p. 124101, Mar. 2021, doi: 10.1063/5.0044917. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/5.0044917
[17]
J. T. Paul, A. Galdi, C. Parzyck, K. M. Shen, J. Maxson, and R. G. Hennig, “Computational synthesis of substrates by crystal cleavage,” npj Comput Mater, vol. 7, no. 1, pp. 1–6, Sep. 2021, doi: 10.1038/s41524-021-00608-3. [Online]. Available: https://www.nature.com/articles/s41524-021-00608-3. [Accessed: 15-Sep-2021]
[18]
J. K. Nangoi, S. Karkare, R. Sundararaman, H. A. Padmore, and T. A. Arias, “Importance of bulk excitations and coherent electron-photon-phonon scattering in photoemission from PbTe(111): Ab initio theory with experimental comparisons,” Phys. Rev. B, vol. 104, no. 11, p. 115132, Sep. 2021, doi: 10.1103/PhysRevB.104.115132. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.104.115132
[19]
S. Nagaitsev, Z. Huang, J. Power, J.-L. Vay, P. Piot, L. Spentzouris, J. Rosenzweig, Y. Cai, S. Cousineau, M. Conde, M. Hogan, A. Valishev, M. Minty, T. Zolkin, X. Huang, V. Shiltsev, J. Seeman, J. Byrd, Y. Hao, B. Dunham, B. Carlsten, A. Seryi, and R. Patterson, “Accelerator and Beam Physics Research Goals and Opportunities,” arXiv:2101.04107 [physics], Jan. 2021 [Online]. Available: http://arxiv.org/abs/2101.04107
[20]
Manwani, Pratik, Majernik, Nathan, Hansel, Claire, and Rosenzweig, James, “Optical-period bunch trains to resonantly excite TV/m wakefields in the quasi-nonlinear regime and the E-317 experiment at FACET-II,” in Bulletin of the American Physical Society, 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/T08.3
[21]
P. Manwani, D. Bruhwiler, B. Hidding, M. Litos, N. Majernik, and J. Rosenzweig, “High Brightness Electron Beams from Dragon Tail Injection and the E-312 Experiment at FACET-II,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.274 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB146. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB146.html. [Accessed: 20-Sep-2021]
[22]
J. Mann and J. Rosenzweig, “Semi-Classical Cutoff Energies for Electron Emission and Scattering at Field-Enhancing Nanostructures with Large Ponderomotive Amplitudes,” arXiv:2105.10601 [cond-mat], May 2021 [Online]. Available: http://arxiv.org/abs/2105.10601
[23]
N. Majernik, G. Andonian, R. Roussel, S. Doran, G. Ha, J. Power, E. Wisniewski, and J. Rosenzweig, “Multileaf Collimator for Real-Time Beam Shaping using Emittance Exchange,” arXiv:2107.00125 [physics], Jun. 2021 [Online]. Available: http://arxiv.org/abs/2107.00125
[24]
J. Lim, A. C. Hire, Y. Quan, J. Kim, L. Fanfarillo, S. R. Xie, R. S. Kumar, C. Park, R. J. Hemley, Y. K. Vohra, R. G. Hennig, P. J. Hirschfeld, G. R. Stewart, and J. J. Hamlin, “High-pressure study of the low-Z rich superconductor Be22Re,” Phys. Rev. B, vol. 104, no. 6, p. 064505, Aug. 2021, doi: 10.1103/PhysRevB.104.064505. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.104.064505
[25]
J. Lim, A. C. Hire, Y. Quan, J. S. Kim, S. R. Xie, R. S. Kumar, D. Popov, C. Park, R. J. Hemley, J. J. Hamlin, R. G. Hennig, P. J. Hirschfeld, and G. R. Stewart, “Creating superconductivity in WB2 through pressure-induced metastable planar defects,” arXiv:2109.11521 [cond-mat], Sep. 2021 [Online]. Available: http://arxiv.org/abs/2109.11521
[26]
Kuklev, Nikita, Valishev, Alexander, Nagaitsev, Sergei, and Kim, Young-Kee, “Experimental Studies of Beam Dynamics in Integrable Storage Rings,” in Bulletin of the American Physical Society, 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/Z07.3
[27]
C. Knill, S. Karkare, and H. Padmore, “Near-Threshold Nonlinear Photoemission From Cu(100),” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.154 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB099. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB099.html
[28]
M. M. Kelley, N. S. Sitaraman, and T. A. Arias, “Ab Initio Theory of the Impact from Grain Boundaries and Substitutional Defects on Superconducting Nb3Sn,” Superconductor Science & Technology, vol. 34, no. 1, p. 015015, Jan. 2021, doi: 10.1088/1361-6668/abc8ce. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6668/abc8ce. [Accessed: 13-May-2021]
[29]
B. Holst, G. Alexandrowicz, N. Avidor, G. Benedek, G. Bracco, W. E. Ernst, D. Farías, A. P. Jardine, K. Lefmann, J. R. Manson, R. Marquardt, S. M. Artés, S. J. Sibener, J. W. Wells, A. Tamtögl, and W. Allison, “Material properties particularly suited to be measured with helium scattering: selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic substrates, topological insulators and superconducting radio frequency materials,” Phys. Chem. Chem. Phys., Feb. 2021, doi: 10.1039/D0CP05833E. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2021/cp/d0cp05833e. [Accessed: 31-Mar-2021]
[30]
Hansel, Claire, Yadav, Monika, An, Weiming, Manwani, Pratik, Mori, Warren, and J. Rosenzweig, “Plasma Wakefield Accelerators with Ion Motion and the E-314 Experiment at FACET-II,” in Bulletin of the American Physical Society, 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/T08.2
[31]
Gupta, Lipi, Mishra, Aashwin, and Edelen, Auralee, “Deep Learning Methods for Uncertainty Quantification at the SLAC Linac Coherent Light Source,” in Bulletin of the American Physical Society, 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/E15.9
[32]
L. Gupta, A. Edelen, N. Neveu, A. Mishra, C. Mayes, and Y.-K. Kim, “Improving surrogate model accuracy for the LCLS-II injector frontend using convolutional neural networks and transfer learning,” Mach. Learn.: Sci. Technol., Sep. 2021, doi: 10.1088/2632-2153/ac27ff. [Online]. Available: https://doi.org/10.1088/2632-2153/ac27ff
[33]
L. Gupta, A. Edelen, N. Neveu, A. Mishra, C. Mayes, and Y.-K. Kim, “Improving Surrogate Model Accuracy for the LCLS-II Injector Frontend Using Convolutional Neural Networks and Transfer Learning,” arXiv:2103.07540 [physics], Mar. 2021 [Online]. Available: http://arxiv.org/abs/2103.07540
[34]
Gordon, Matthew, Van Der Geer, S.B., Maxson, Jared, and Kim, Young-Kee, “Point-to-Point Coulomb Effects in High Brightness Photoelectron Beamlines for Ultrafast Electron Diffraction,” in Bulletin of the American Physical Society, 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/T08.5
[35]
A. Galdi, J. Balajka, W. J. I. DeBenedetti, L. Cultrera, I. V. Bazarov, M. A. Hines, and J. M. Maxson, “Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates,” Appl. Phys. Lett., vol. 118, no. 24, p. 244101, Jun. 2021, doi: 10.1063/5.0053186. [Online]. Available: https://aip.scitation.org/doi/10.1063/5.0053186
[36]
G. Lawler, Majernik, Nathan, A. Fukasawa, Y. Sakai, and J. B. Rosenzweig, “Cryocooler Technology for Electron Particle Accelerators,” in Cryocoolers 21, Boulder, CO, 2021.
[37]
D. B. Durham, C. M. Pierce, F. Riminucci, S. R. Loria, K. Kanellopulos, I. Bazarov, J. Maxson, S. Cabrini, A. M. Minor, and D. Filippetto, “Characterizing plasmon-enhanced photoemitters for bright ultrafast electron beams,” in Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX, 2021, vol. 11797, p. 117972D, doi: 10.1117/12.2597708 [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11797/117972D/Characterizing-plasmon-enhanced-photoemitters-for-bright-ultrafast-electron-beams/10.1117/12.2597708.short
[38]
A. Dick, J. Jarvis, and P. Piot, “Numerical Modelling of the Optical Stochastic Cooling Experiment at IOTA,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.299 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB271. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB271.html
[39]
A. Dick, J. Jarvis, and P. Piot, “Characterization and Simulation of Optical Delay System for the Proof-of-Principle Experiment of Optical Stochastic Cooling at IOTA,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 1.880 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB270. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB270.html
[40]
L. Cultrera, E. Rocco, F. Shahedipour-Sandvik, L. D. Bell, J. K. Bae, I. V. Bazarov, P. Saha, S. Karkare, and A. Arjunan, “Photoemission characterization of N-polar III-Nitride photocathodes as bright electron beam source for accelerator applications,” arXiv:2110.01533 [physics], Oct. 2021 [Online]. Available: http://arxiv.org/abs/2110.01533
[41]
O. Chubenko, S. Karkare, D. A. Dimitrov, J. K. Bae, L. Cultrera, I. Bazarov, and A. Afanasev, “Monte Carlo modeling of spin-polarized photoemission from p-doped bulk GaAs,” Journal of Applied Physics, vol. 130, no. 6, p. 063101, Aug. 2021, doi: 10.1063/5.0060151. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/5.0060151
[42]
J. Carlson, A. Pack, M. K. Transtrum, J. Lee, D. N. Seidman, D. B. Liarte, N. Sitaraman, A. Senanian, J. P. Sethna, T. Arias, S. Posen, and M. M. Kelley, “Analysis of Magnetic Vortex Dissipation in Sn-Segregated Boundaries in Nb3Sn SRF Cavities,” Phys. Rev. B, vol. 103, no. 2, p. 024516, Jan. 2021, doi: 10.1103/PhysRevB.103.024516. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.103.024516. [Accessed: 13-May-2021]

2020

[1]
S. A. Willson, “Deconvoluting Initial Nb-Sn-O Interactions: Spatially Resolved Electronic Characterization of Sn Reconstructions on (3×1)-O Nb(100),” Cornell University, Ithaca, NY, 10-Nov-2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1487/
[2]
R. D. Veit, R. G. Farber, N. S. Sitaraman, T. A. A. Arias, and S. J. Sibener, “Suppression of Nano-Hydride Growth on Nb(100) Due to Nitrogen Doping,” Journal of Chemical Physics, vol. 152, no. 21, p. 214703, 2020, doi: 10.1063/5.0007042. [Online]. Available: http://aip.scitation.org/doi/10.1063/5.0007042
[3]
Sun, Zeming, “Electrochemical deposition for generating Nb3Sn films with low surface roughness and stoichiometry,” Cornell University, Ithaca, NY, 10-Nov-2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1461/
[4]
N. Stilin, A. Holic, M. Liepe, R. Porter, and J. Sears, “Stable CW Operation of Nb3Sn SRF Cavity at 10 MV/m using Conduction Cooling,” arXiv:2002.11755 [physics], Feb. 2020 [Online]. Available: http://arxiv.org/abs/2002.11755
[5]
Ryan Porter, “Growth Studies and Optimization of Nb3Sn Coatings,” Cornell University, Ithaca, NY, 10-Nov-2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1470/
[6]
J. B. Rosenzweig, N. Majernik, R. R. Robles, G. Andonian, O. Camacho, A. Fukasawa, A. Kogar, G. Lawler, J. Miao, P. Musumeci, B. Naranjo, Y. Sakai, R. Candler, B. Pound, C. Pellegrini, C. Emma, A. Halavanau, J. Hastings, Z. Li, M. Nasr, S. Tantawi, P. Anisimov, B. Carlsten, F. Krawczyk, E. Simakov, L. Faillace, M. Ferrario, B. Spataro, S. Karkare, J. Maxson, Y. Ma, J. Wurtele, A. Murokh, A. Zholents, A. Cianchi, and D. Cocco, “An Ultra-Compact X-Ray Free-Electron Laser,” arXiv:2003.06083 [cond-mat, physics:hep-ex, physics:physics], Mar. 2020 [Online]. Available: http://arxiv.org/abs/2003.06083
[7]
J. B. Rosenzweig, “Ultra-compact X-ray FEL Based on Advanced Cryogenic RF Techniques,” in Proceedings of the APS Virtual April 2020 Meeting, Virtual, 2020 [Online]. Available: https://aps-april.onlineeventpro.freeman.com/speakers/rosen~physics.ucla.edu/James-Rosenzweig
[8]
A. Romanov, J. Santucci, G. Stancari, A. Valishev, and N. Kuklev, “Experimental 3-dimensional tracking of the dynamics of a single electron in the Fermilab Integrable Optics Test Accelerator (IOTA),” arXiv:2012.04148 [physics], Dec. 2020 [Online]. Available: http://arxiv.org/abs/2012.04148
[9]
C. M. Pierce, M. B. Andorf, E. Lu, C. Gulliford, I. V. Bazarov, J. M. Maxson, M. Gordon, Y.-K. Kim, N. P. Norvell, B. M. Dunham, and T. O. Raubenheimer, “Low intrinsic emittance in modern photoinjector brightness,” Phys. Rev. Accel. Beams, vol. 23, no. 7, p. 070101, Jul. 2020, doi: 10.1103/PhysRevAccelBeams.23.070101. [Online]. Available: http://arxiv.org/abs/2004.08034
[10]
C. T. Parzyck, B. D. Faeth, G. N. Tam, G. R. Stewart, and K. M. Shen, “Enhanced surface superconductivity in Ba(Fe 0.95 Co 0.05 ) 2 As 2,” Applied Physics Letters, vol. 116, no. 6, p. 062601, Feb. 2020, doi: 10.1063/1.5133647. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.5133647
[11]
E. Padgett, M. E. Holtz, P. Cueva, Y.-T. Shao, E. Langenberg, D. G. Schlom, and D. A. Muller, “The exit-wave power-cepstrum transform for scanning nanobeam electron diffraction: robust strain mapping at subnanometer resolution and subpicometer precision,” Ultramicroscopy, vol. 214, p. 112994, Jul. 2020, doi: 10.1016/j.ultramic.2020.112994. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0304399119303377
[12]
A. R. Pack, J. Carlson, S. Wadsworth, and M. K. Transtrum, “Vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory in two and three dimensions: Role of surface defects and material inhomogeneities,” Physical Review B, vol. 101, no. 14, Apr. 2020, doi: 10.1103/PhysRevB.101.144504. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.101.144504
[13]
A. R. Pack, J. Carlson, S. Wadsworth, and M. K. Transtrum, “Role of surface defects and material inhomogeneities for vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory in 2 and 3 dimensions,” Phys. Rev. B, vol. In press., Feb. 2020 [Online]. Available: http://arxiv.org/abs/1911.02132
[14]
J. N. Nelson, C. T. Parzyck, B. D. Faeth, J. K. Kawasaki, D. G. Schlom, and K. M. Shen, “Mott gap collapse in lightly hole-doped Sr2−xKxIrO4,” Nature Communications, vol. 11, no. 1, May 2020, doi: 10.1038/s41467-020-16425-z. [Online]. Available: http://www.nature.com/articles/s41467-020-16425-z
[15]
J. K. Nangoi, S. Karkare, R. Sundararaman, H. A. Padmore, and T. A. Arias, “Ab initio many-body photoemission theory of transverse energy distribution of photoelectrons: PbTe(111) as a case study with experimental comparisons,” arXiv:2006.11924 [cond-mat, physics:physics], Jun. 2020 [Online]. Available: http://arxiv.org/abs/2006.11924
[16]
A. A. McMillan, J. D. Graham, S. A. Willson, R. G. Farber, C. J. Thompson, and S. J. Sibener, “Persistence of the Nb(100) surface oxide reconstruction at elevated temperatures,” Superconductor Science and Technology, vol. 33, no. 10, p. 105012, Oct. 2020, doi: 10.1088/1361-6668/abaec0. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6668/abaec0
[17]
Liepe, M, “Compact Superconducting RF Electron Accelerating Systems,” in Bulletin of the American Physical Society, 2020 [Online]. Available: https://meetings.aps.org/Meeting/DNP20/Session/LA.2
[18]
J. Lee, Z. Mao, K. He, Z. H. Sung, T. Spina, S.-I. Baik, D. L. Hall, M. Liepe, D. N. Seidman, and S. Posen, “Grain-boundary structure and segregation in Nb3Sn coatings on Nb for high-performance superconducting radiofrequency cavity applications,” Acta Materialia, vol. 188, pp. 155–165, Apr. 2020, doi: 10.1016/j.actamat.2020.01.055. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S135964542030080X
[19]
V. Lebedev, J. Jarvis, H. Piekarz, A. Romanov, J. Ruan, and M. Andorf, “Conceptual Design Report: Optical Stochastic Cooling at IOTA,” arXiv:2012.09967 [physics], Dec. 2020 [Online]. Available: http://arxiv.org/abs/2012.09967
[20]
M. M. Kelley, N. Sitaraman, and T. A. Arias, “Ab initio theory of the impact of grain boundaries and substitutional defects on superconducting Nb3Sn,” Supercond. Sci. Technol., Nov. 2020, doi: 10.1088/1361-6668/abc8ce. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6668/abc8ce
[21]
S. Karkare, G. Adhikari, W. A. Schroeder, J. K. Nangoi, T. Arias, J. Maxson, and H. Padmore, “Ultracold electrons via Near-Threshold Photoemission from Single-Crystal Cu(100),” arXiv:2002.11579 [physics], Feb. 2020 [Online]. Available: http://arxiv.org/abs/2002.11579
[22]
C. Hansel, W. An, W. Mori, and J. B. Rosenzweig, “Nonlinear equilibria and emittance growth in plasma wakefield accelerators with ion motion,” arXiv:2003.12062 [physics], Mar. 2020 [Online]. Available: http://arxiv.org/abs/2003.12062
[23]
A. Galdi, W. J. I. DeBenedetti, J. Balajka, L. Cultrera, I. V. Bazarov, J. M. Maxson, and M. A. Hines, “The effects of oxygen-induced phase segregation on the interfacial electronic structure and quantum efficiency of Cs3Sb photocathodes,” The Journal of Chemical Physics, vol. 153, no. 14, p. 144705, Oct. 2020, doi: 10.1063/5.0024020. [Online]. Available: http://aip.scitation.org/doi/10.1063/5.0024020
[24]
Farber, R.G., “Spatially Resolved Adsorption Structures and Diffusion Dynamics of Sn on (3×1)-O Nb(100),” Cornell University, Ithaca, NY, 10-Nov-2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1484/
[25]
C. J. R. Duncan, D. A. Muller, and J. M. Maxson, “Lossless Monochromation for Electron Microscopy with Pulsed Photoemission Sources and Radio-Frequency Cavities,” Physical Review Applied, vol. 14, no. 1, Jul. 2020, doi: 10.1103/PhysRevApplied.14.014060. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.14.014060
[26]
P. Denham, F. Cropp, and P. Musumeci, “Analysis of Skew Quadrupole Compensation in RF-Photoinjectors,” arXiv:2003.00049 [physics], Feb. 2020 [Online]. Available: http://arxiv.org/abs/2003.00049
[27]
L. Cultrera, A. Galdi, J. K. Bae, F. Ikponmwen, J. Maxson, and I. Bazarov, “Long lifetime polarized electron beam production from negative electron affinity GaAs activated with Sb-Cs-O: Trade-offs between efficiency, spin polarization, and lifetime,” Physical Review Accelerators and Beams, vol. 23, no. 2, Feb. 2020, doi: 10.1103/PhysRevAccelBeams.23.023401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.023401
[28]
M. B. Andorf, V. A. Lebedev, and P. Piot, “Single-pass Cr:ZnSe amplifier for broadband infrared undulator radiation,” Optics Express, vol. 28, no. 18, p. 26601, Aug. 2020, doi: 10.1364/OE.396431. [Online]. Available: https://www.osapublishing.org/abstract.cfm?URI=oe-28-18-26601
[29]
M. B. Andorf, W. F. Bergan, I. V. Bazarov, J. M. Maxson, V. Khachatryan, D. L. Rubin, and S. T. Wang, “Optical stochastic cooling with an arc bypass in the Cornell Electron Storage Ring,” Phys. Rev. Accel. Beams, vol. 23, no. 10, p. 102801, Oct. 2020, doi: 10.1103/PhysRevAccelBeams.23.102801. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.102801

2019

[1]
S. R. Xie, G. R. Stewart, J. J. Hamlin, P. J. Hirschfeld, and R. G. Hennig, “Functional Form of the Superconducting Critical Temperature from Machine Learning,” arXiv:1905.06780 [cond-mat], May 2019 [Online]. Available: http://arxiv.org/abs/1905.06780. [Accessed: 28-May-2019]
[2]
R. D. Veit, N. A. Kautz, R. G. Farber, and S. J. Sibener, “Oxygen dissolution and surface oxide reconstructions on Nb(100),” Surf. Sci., vol. 688, pp. 63–68, Oct. 2019, doi: 10.1016/j.susc.2019.06.004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0039602819303589
[3]
R. D. Veit, “Low-Temperature Scanning Tunneling Microscopy and Scanning Tunneling Microscopy Study of Hydrogen and Nitrogen Doped Nb(100) Crystals,” Ph.D. thesis, University of Chicago, 2019.
[4]
Z. Sun, M. Liepe, J. Maniscalco, T. Oseroff, R. Porter, D. Zhang, and X. Deng, “Fast Sn-ion transport on Nb surface for generating NbxSn thin films and XPS depth profiling,” in Proc. NAPAC’19, Lansing, MI, 2019 [Online]. Available: https://napac2019.vrws.de/papers/weplm60.pdf
[5]
Z. Sun, T. Arias, A. Connolly, X. Deng, K. Dobson, M. Liepe, T. Oseroff, R. Porter, J. Scholtz, N. Sitaraman, and M. Thompson, “Electroplating of Sn Film on Nb Substrate for Generating Nb₃Sn Thin Films and Post Laser Annealing,” Proceedings of the 19th International Conference on RF Superconductivity, vol. SRF2019, p. 4 pages, 0.805 MB, 2019, doi: 10.18429/JACOW-SRF2019-MOP014. [Online]. Available: http://jacow.org/srf2019/doi/JACoW-SRF2019-MOP014.html
[6]
N. S. Sitaraman, J. Carlson, A. R. Pack, R. D. Porter, M. U. Liepe, M. K. Transtrum, and T. A. Arias, “Ab Initio Study of Antisite Defects in Nb3Sn: Phase Diagram and Impact on Superconductivity,” arXiv:1912.07576 [cond-mat, physics:physics], Dec. 2019 [Online]. Available: http://arxiv.org/abs/1912.07576
[7]
N. Sitaraman, T. A. Arias, R. G. Farber, M. Liepe, J. Maniscalco, S. J. Sibener, and R. D. Veit, “Ab Initio Calculations on Impurity Doped Niobium and Niobium Surfaces,” in Proc. SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-TUP045.
[8]
J. Rosenzweig, “Towards an ultra-compact x-ray free-electron laser (Conference Presentation),” in Advances in Laboratory-based X-Ray Sources, Optics, and Applications VII, 2019, vol. 11110, p. 1111006, doi: 10.1117/12.2531143 [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11110/1111006/Towards-an-ultra-compact-x-ray-free-electron-laser-Conference/10.1117/12.2531143.short
[9]
J. B. Rosenzweig, A. Cahill, V. Dolgashev, C. Emma, A. Fukasawa, R. Li, C. Limborg, J. Maxson, P. Musumeci, A. Nause, R. Pakter, R. Pompili, R. Roussel, B. Spataro, and S. Tantawi, “Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources,” Phys. Rev. Accel. Beams, vol. 22, no. 2, p. 023403, Feb. 2019, doi: 10.1103/PhysRevAccelBeams.22.023403. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.023403
[10]
A. Romanov, D. R. Broemmelsiek, K. Carlson, D. J. Crawford, N. Eddy, D. R. Edstrom, J. Jarvis, V. Lebedev, S. Nagaitsev, J. Ruan, J. K. Santucci, V. Shiltsev, G. Stancari, A. Valishev, A. Warner, Y.-K. Kim, N. Kuklev, I. Lobach, S. Chattopadhyay, and S. Szustkowki, “RECENT RESULTS AND OPPORTUNITIES AT THE IOTA FACILITY,” in Proceedings of the 9th International Beam Instrumentation Conf., Malmo, Sweden, 2019, vol. FERMILAB-CONF-19-675-AD [Online]. Available: https://www.osti.gov/biblio/1614724
[11]
R. Robles and J. Rosenzweig, “Compression of Ultra-High Brightness Beams for a Compact X-ray Free-Electron Laser,” Instruments, vol. 3, no. 4, p. 53, Oct. 2019, doi: 10.3390/instruments3040053. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/53
[12]
R. D. Porter, H. Hu, M. Liepe, J. Tao, N. Stilin, and Z. Sun, “Progress in Nb3Sn SRF Cavities at Cornell University,” in Proc. NAPAC’19, Lansing, MI, 2019 [Online]. Available: https://napac2019.vrws.de/papers/moybb3.pdf
[13]
A. Pack and M. Transtrum, “Numerical Calculations of the Superconducting Superheating Field within Eilenberger Theory,” in Bull. of the Am. Phys. Soc., Prescott, Arizona, 2019 [Online]. Available: http://meetings.aps.org/Meeting/4CS19/Session/B05.2
[14]
T. E. Oseroff, M. Liepe, B. Moeckly, M. Sowa, and Z. Sun, “RF Characterization of Novel Superconducting Materials and Multilayers,” in Proc. SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-THP044 [Online]. Available: https://srf2019.vrws.de/papers/thp044.pdf
[15]
T. E. Oseroff and M. Liepe, “Improvements  to  the  Cornell Sample  Host  System,” in Proc. SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-THP045.
[16]
J. K. Nangoi, “Ab initio theory and calculations of many-body effects in photoemission from semiconductor surfaces: Cs3Sb as a case study,” Boston, MA, 04-Mar-2019 [Online]. Available: https://meetings.aps.org/Meeting/MAR19/Session/P33.7
[17]
A. M. Minor, P. Denes, and D. A. Muller, “Cryogenic electron microscopy for quantum science,” MRS Bull., vol. 44, no. 12, pp. 961–966, Dec. 2019, doi: 10.1557/mrs.2019.288. [Online]. Available: https://doi.org/10.1557/mrs.2019.288. [Accessed: 09-Jan-2020]
[18]
J. Mann, G. Lawler, and J. Rosenzweig, “1D Quantum Simulations of Electron Rescattering with Metallic Nanoblades,” Instruments, vol. 3, no. 4, p. 59, Dec. 2019, doi: 10.3390/instruments3040059. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/59
[19]
J. Maniscalco, M. Ge, P. N. Koufalis, M. Liepe, T. A. Arias, D. B. Liarte, J. P. Sethna, and N. Sitaraman, “The Field-Dependent Surface Resistance of Doped Niobium: New Experimental and Theoretical Results,” in Proc. SRF’19, 2019, doi: doi:10.18429/JACoW-SRF2019-TUFUA1 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/srf2019/papers/tufua1.pdf
[20]
J. Maniscalco, “Studies of the Field-Dependent Surface Resistance of Nitrogen-Doped Niobium for Superconducting Accelerators,” Ph.D. thesis, Cornell University, 2019 [Online]. Available: https://www.classe.cornell.edu/rsrc/Home/Research/SRF/SrfDissertations/James_thesis_final.pdf
[21]
J. Maniscalco, “Nitrogen doping, nitrogen infusion, and niobium-3 tin: recent challenges and advances in fundamental SRF accelerator physics,” Joint Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC-ICMC), Hartford, CT, Jul. 2019.
[22]
J. T. Maniscalco, M. Liepe, T. A. Arias, D. B. Liarte, J. P. Sethna, and N. Sitaraman, “Theoretical Analysis of Quasiparticle Overheating, Positive Q-Slope, and Vortex Losses in SRF Cavities,” in Proc. IPAC2019, Melbourne, Australia, 2019, doi: 10.18429/JACoW-IPAC2019-WEPRB089 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/weprb089.pdf
[23]
J. T. Maniscalco, T. Gruber, A. T. Holic, and M. Liepe, “Progress Towards Commissioning the Cornell DC Field Dependence Cavity,” in Proc. of SRF’19, Dresden, Germany, 2019, doi: doi:10.18429/JACoW-SRF2019-TUP051 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/srf2019/papers/tup051.pdf
[24]
N. Majernik and J. Rosenzweig, “Design of Comb Fabricated Halbach Undulators,” Instruments, vol. 3, no. 4, p. 58, Dec. 2019, doi: 10.3390/instruments3040058. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/58
[25]
N. Majernik and J. B. Rosenzweig, “Halbach undulators using right triangular magnets,” Phys. Rev. Accel. Beams, vol. 22, no. 9, p. 092401, Sep. 2019, doi: 10.1103/PhysRevAccelBeams.22.092401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.092401
[26]
S. N. Lobo, M. Liepe, and T. E. Oseroff, “Magnetic Field Mapping System for Cornell Sample Host Cavity,” in Proceedings of SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-THP046.
[27]
M. Liepe, “Superconducting RF for the Future: Is Nb3Sn Ready for Next-generation Accelerators?,” in Proc. IPAC2019, Melbourne, Australia, 2019 [Online]. Available: https://accelconf.web.cern.ch/ipac2019/talks/tuxplm1_talk.pdf
[28]
W. H. Li, M. B. Andorf, I. V. Bazarov, L. Cultrera, C. J. R. Duncan, A. Galdi, J. M. Maxson, and C. A. Pennington, “Ultrafast Nonlinear Photoemission from Alkali Antimonide Photocathodes,” in Proc. NAPAC’19, Lansing, MI, 2019 [Online]. Available: https://napac2019.vrws.de/papers/moplh14.pdf
[29]
G. Lawler, K. Sanwalka, Y. Zhuang, V. Yu, T. Paschen, R. Robles, O. Williams, Y. Sakai, B. Naranjo, and J. Rosenzweig, “Electron Diagnostics for Extreme High Brightness Nano-Blade Field Emission Cathodes,” Instruments, vol. 3, no. 4, p. 57, Dec. 2019, doi: 10.3390/instruments3040057. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/57
[30]
N. Kuklev, Y.-K. Kim, S. Nagaitsev, A. Romanov, and A. Valishev, “Experimental Demonstration of the Henon-Heiles Quasi-Integrable System of IOTA,” in Proc. IPAC2019, Melbourne, Australia, 2019, doi: 10.18429/JACoW-IPAC2019-MOPGW113 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/mopgw113.pdf
[31]
N. Kuklev, Y.-K. Kim, J. Jarvis, A. L. Romanov, J. K. Santucci, and G. Stancari, “Synchrotron Radiation Beam Diagnostics at IOTA-Commissioning Performance and Upgrade Efforts,” in Proc. of IPAC2019, Melbourne, Australia, 2019, doi: 10.18429/JACoW-IPAC2019-WEPGW103 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/wepgw103.pdf
[32]
D. H. Koh and S. S. Baturin, “Analytic model of 3D beam dynamics in a wakefield device,” NIM A, vol. 925, pp. 128–132, May 2019, doi: 10.1016/j.nima.2019.02.016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900219301913
[33]
Y.-K. Kim, “Program at the center for bright beams to recruit and train the next generation of scientists in accelerator and related fields,” AIP Conference Proceedings, vol. 2160, no. 1, p. 040008, Oct. 2019, doi: 10.1063/1.5127688. [Online]. Available: https://aip.scitation.org/doi/abs/10.1063/1.5127688
[34]
S. Keckert, T. Buck, D. Hall, J. Knobloch, P. Kolb, O. Kugeler, R. Laxdal, M. Liepe, S. Posen, T. Prokscha, Z. Salman, A. Suter, and T. Junginger, “Critical Fields of Nb3Sn Prepared for Superconducting Cavities,” Supercond. Sci. Technol., vol. 32, no. 7, p. 075004, May 2019, doi: 10.1088/1361-6668/ab119e. [Online]. Available: https://doi.org/10.1088/1361-6668/ab119e
[35]
S. Karkare, J. Feng, J. Maxson, and H. A. Padmore, “Development of a 3-D energy-momentum analyzer for meV-scale energy electrons,” Rev. of Sci. Instr., vol. 90, no. 5, p. 053902, May 2019, doi: 10.1063/1.5091683. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5091683
[36]
F.-H. Ji, J. Giner Navarro, P. Musumeci, D. Durham, A. Minor, and D. Filippetto, “Knife-edge based measurement of the 4D transverse phase space of electron beams with picometer-scale emittance,” Phys. Rev. Accel. Beams, vol. 22, p. 082801, Aug. 2019, doi: 10.1103/PhysRevAccelBeams.22.082801. [Online]. Available: https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.22.082801
[37]
F. H. Ji, D. Durham, A. Minor, P. Musumeci, J. Navarro, and D. Filippetto, “Ultrafast Relativistic Electron Nanoprobes,” Nat. Commun., vol. 2, no. 1, p. 54, May 2019, doi: 10.1038/s42005-019-0154-4. [Online]. Available: https://www.nature.com/articles/s42005-019-0154-4
[38]
M. Hu, M. Liepe, and R. D. Porter, “Reducing Surface Roughness of Nb3Sn Through Chemical Polishing Treatments,” in Proc. SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-MOP013 [Online]. Available: https://srf2019.vrws.de/papers/mop013.pdf
[39]
L. Gupta, S. Baturin, S. Nagaitsev, and Y.-K. Kim, “Study of Integrable and Quasi-Integrable Sextupole Lattice,” Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-MOPGW107. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/mopgw107.pdf
[40]
M. Gordon, Y.-K. Kim, and J. M. Maxson, “The Effects of Stochastic Space Charge in High Brightness Photoelectron Beamlines for Ultrafast Electron Diffraction,” in Proc. IPAC2019, Melbourne, Australia, 2019, vol. IPAC2019, doi: 10.18429/jacow-ipac2019-wepts069 [Online]. Available: http://jacow.org/ipac2019/doi/JACoW-IPAC2019-WEPTS069.html
[41]
G. S. Gevorkyan, S. Karkare, I. V. Bazarov, L. Cultrera, A. Galdi, W. H. Li, and J. M. Maxson, “Design of a 200 kV DC Cryocooled Photoemission Gun for Photocathode Investigations,” in Proc. NAPAC’19, 2019 [Online]. Available: https://napac2019.vrws.de/papers/moplm16.pdf
[42]
A. Galdi, C. M. Pierce, L. Cultrera, G. Adhikari, W. A. Schroeder, H. Paik, D. G. Schlom, J. K. Nangoi, T. A. Arias, E. Lochocki, C. Parzyck, K. M. Shen, J. M. Maxson, and I. V. Bazarov, “Low energy photoemission from (100) Ba1−xLaxSnO3 thin films for photocathode applications,” Eur. Phys. J. Spec. Top., vol. 228, no. 3, pp. 713–718, Jul. 2019, doi: 10.1140/epjst/e2019-800175-x. [Online]. Available: https://doi.org/10.1140/epjst/e2019-800175-x
[43]
R. G. Farber, R. D. Veit, N. S. Sitaraman, T. A. Arias, and S. J. Sibener, “Nano-Scale Characterization of the Growth and Suppression Behavior of Niobium Hydrides for Next Generation Superconducting RF Accelerators and Light Sources,” in Program of the AVS Prairie Chapter Symposium, Champaign, IL, 2019, p. p.27 [Online]. Available: https://avs.mrl.illinois.edu/files/2019/09/AVSPCSE2019-Program-final.pdf
[44]
C. Duncan, M. B. Andorf, V. Khachatryan, C. Gulliford, J. Maxson, D. Rubin, and I. Bazarov, “A Generic Software Platform For Rapid Prototyping of Online Cotnrol Algorithms,” Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia, Jul. 2019, doi: 10.18429/JACoW-IPAC2019-THPRB100. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/thprb100.pdf
[45]
A. J. Dick, P. Piot, and M. B. Andorf, “Progress Toward a Laser Amplifier for Optical Stochastic Cooling,” in Proc. NAPAC’19, Lansing, MI, 2019 [Online]. Available: https://napac2019.vrws.de/papers/tuplm26.pdf
[46]
P. Cueva, E. Padget, and D. A. Muller, “Sub-nm Resolution, Sub-pm Precision Structure Mapping Robust to Thickness and Tilt Variations by Cepstral Analysis of Scanning Nanodiffraction 4D-STEM,” Microsc. Microanal., vol. 25, no. S2, p. 1934, Aug. 2019, doi: 10.1017/S1431927619010407. [Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/subnm-resolution-subpm-precision-structure-mapping-robust-to-thickness-and-tilt-variations-by-cepstral-analysis-of-scanning-nanodiffraction-4dstem/CCB5F9C8DA602648803DDCD4BED06778
[47]
C. B. Clement, M. Bierbaum, and J. Sethna, “Image registration and super resolution from first principles,” arXiv:1809.05583 [physics], Feb. 2019 [Online]. Available: https://arxiv.org/pdf/1809.05583.pdf
[48]
O. Chubenko, S. S. Baturin, and S. V. Baryshev, “Theoretical evaluation of electronic density-of-states and transport effects on field emission from n-type ultrananocrystalline diamond films,” Journal of Applied Physics, vol. 125, no. 20, p. 205303, May 2019, doi: 10.1063/1.5085679. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5085679
[49]
W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, D. B. Liarte, D. L. Rubin, and J. P. Sethna, “Online storage ring optimization using dimension-reduction and genetic algorithms,” Phys. Rev. Accel. Beams, vol. 22, no. 5, p. 054601, May 2019, doi: 10.1103/PhysRevAccelBeams.22.054601. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.054601
[50]
W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, and D. L. Rubin, “Applications of Dimension-Reduction to Various Accelerator Physics Problems,” in Proc. IPAC2019, Melbourne, Australia, 2019, doi: 10.18429/JACoW-IPAC2019-THPRB099 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/thprb099.pdf
[51]
S. Baturin, T. Nikhar, and S. Baryshev, “Field electron emission induced glow discharge in nanodiamond vacuum diode,” J. Phys. D: Appl. Phys., 2019, doi: 10.1088/1361-6463/ab2183. [Online]. Available: http://iopscience.iop.org/10.1088/1361-6463/ab2183

2018

[1]
A. Zholents, S. Baturin, D. Doran, W. Jansma, M. Kasa, R. Kustom, H. Perez, J. Power, N. Strelnikov, K. Suthar, E. Trakhtenberg, I. Vasserman, G. Waldschmidt, and J. Xu, “A Conceptual Design of a Compact Wakefield Accelerator for a High Repetition Rate Multi User X-ray Free-Electron Laser Facility,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupmf010. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupmf010
[2]
B. H. Savitzky, I. El Baggari, C. B. Clement, E. Waite, B. H. Goodge, D. J. Baek, J. P. Sheckelton, C. Pasco, H. Nair, N. J. Schreiber, J. Hoffman, A. S. Admasu, J. Kim, S.-W. Cheong, A. Bhattacharya, D. G. Schlom, T. M. McQueen, R. Hovden, and L. F. Kourkoutis, “Image registration of low signal-to-noise cryo-STEM data,” Ultramicroscopy, vol. 191, pp. 56–65, Aug. 2018, doi: 10.1016/j.ultramic.2018.04.008. [Online]. Available: https://doi.org/10.1016/j.ultramic.2018.04.008
[3]
J. B. Rosenzweig, A. Cahill, B. Carlsten, G. Castorina, M. Croia, C. Emma, A. Fukusawa, B. Spataro, D. Alesini, V. Dolgashev, M. Ferrario, G. Lawler, R. Li, C. Limborg, J. Maxson, P. Musumeci, R. Pompili, S. Tantawi, and O. Williams, “Ultra-high brightness electron beams from very-high field cryogenic radiofrequency photocathode sources,” NIM A, vol. 909, pp. 224–228, Nov. 2018, doi: 10.1016/j.nima.2018.01.061. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900218300780
[4]
R. Porter, M. Liepe, J. Maniscalco, and R. Strauss, “Update on Sample Host Cavity Design Work for Measuring Flux Entry and Quench Field,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb044. [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB044.html
[5]
R. Porter, T. Arias, P. Cueva, D. Hall, M. Liepe, J. Maniscalco, D. Muller, and N. Sitaraman, “Next Generation Nb3Sn SRF Cavities for Linear Accelerators,” Proceedings of the 29th Linear Accelerator Conference, Beijing, China, pp. 462–465, Aug. 2018, doi: 10.18429/JACoW-LINAC2018-TUPO055. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/linac2018/doi/JACoW-LINAC2018-TUPO055.html
[6]
R. Porter, F. Furuta, D. Hall, M. Liepe, and J. Maniscalco, “Effects of Chemical Treatments on the Surface Roughess and Surface Magnetic Field Ehancement of Nb3Sn Films for Superconducting Radio-Frequency Cavities,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb043 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB043.html
[7]
R. Porter, T. A. Arias, P. Cueva, J. Ding, D. Hall, M. Liepe, D. A. Muller, and N. Sitaraman, “Update on Nb3Sn Progress at Cornell University,” in Proc. IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf050 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf050
[8]
C. Pierce, S. Baturin, I. Bazarov, M. Gordon, C. Gulliford, Y.-K. Kim, and J. Maxson, “Understanding and Compensating Emittance Diluting Effects in Highly Optimized Ultrafast Electron Diffraction Beamlines,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpaf024. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpaf024
[9]
J. Paul, I. V. Bazarov, A. Galdi, R. Hennig, S. Karkare, and H. Padmore, “Computational Screening for Low Emittance Photocathodes,” in Proc. IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpml053 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2018/papers/thpml053.pdf
[10]
T. Oseroff, D. Hall, M. Liepe, and J. Maniscalco, “High-frequency SRF Cavities,” in Proc. of SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-tupb009 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-TUPB009.html
[11]
T. Oseroff, M. Ge, M. Liepe, J. Maniscalco, S. McNeal, R. Porter, and M. Sowa, “Performance of Samples with Novel SRF Materials and Growth Techniques,” in Proc. IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf047 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf047
[12]
J. K. Nangoi, T. A. Arias, S. Karkare, H. Padmore, and A. Schroeder, “The Role of Electron-Phonon Scattering in Transverse Momentum Conservation in PbTe(111) Photocathodes,” in Proc. IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/JACoW-IPAC2018-TUPMF065 [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2018-TUPMF065
[13]
P. Musumeci, J. Giner Navarro, J. B. Rosenzweig, L. Cultrera, I. Bazarov, J. Maxson, S. Karkare, and H. Padmore, “Advances in bright electron sources,” NIM A, vol. 907, p. 209, Nov. 2018, doi: 10.1016/j.nima.2018.03.019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900218303541
[14]
D. Marx, J. Giner Navarro, D. Cesar, J. Maxson, B. Marchetti, R. Assmann, and P. Musumeci, “Single-shot reconstruction of core 4D phase space of high-brightness electron beams using metal grids,” Phys. Rev. Accel. Beams, vol. 21, no. 10, p. 102802, Oct. 2018, doi: 10.1103/PhysRevAccelBeams.21.102802. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102802
[15]
J. Maniscalco and M. Liepe, “Updates on the DC Field Dependence Cavity,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf044. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf044
[16]
J. Maniscalco and M. Liepe, “A Computational Method for More Accurate Measurements of the Surface Resistance in SRF Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf042. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf042
[17]
J. Maniscalco, P. Koufalis, and M. Liepe, “Modeling of the Frequency and Field Dependence of the Surface Resistance of Impurity-Doped Niobium,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf046. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2018-WEPMF046
[18]
J. T. Maniscalco, P. N. Koufalis, and M. Liepe, “Fundamental Studies of Impurity Doping in 1.3 GHz And Higher Frequency SRF Cavities,” in Proc. of LINAC2018, Beijing, China, 2018, doi: doi: 10.18429/JACoW-LINAC2018-TUPO054 [Online]. Available: http://linac2018.vrws.de/papers/tupo054.pdf
[19]
J. Maniscalco, M. Liepe, and R. Porter, “Design Updates on Cavity to Measure Suppression of Microwave Surface Resistance by DC Magnetic Fields,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb005 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB005.html
[20]
D. Liarte, T. Arias, D. Hall, M. Liepe, A. Pack, J. Sethna, N. Sitamaran, and M. Transtrum, “SRF Theory Developments from the Center for Bright Beams,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb040. [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB040.html
[21]
D. B. Liarte, D. Hall, P. N. Koufalis, A. Miyazaki, A. Senanian, M. Liepe, and J. P. Sethna, “Vortex dynamics and losses due to pinning: Dissipation from trapped magnetic flux in resonant superconducting radio-frequency cavities,” Phys. Rev. Applied, vol. 10, p. 054057, Nov. 2018, doi: 10.1103/PhysRevApplied.10.054057. [Online]. Available: http://arxiv.org/abs/1808.01293
[22]
W. Li, I. Bazarov, C. Gulliford, and J. Maxson, “Novel Photocathode Geometry Optimization: Field Enhancing Photoemission Tips,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, p. TUPML029, 2018, doi: 10.18429/jacow-ipac2018-tupml029. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupml029
[23]
S. Karkare, I. Bazarov, S. Emamian, A. Galdi, G. Gevorkyan, H. Padmore, and A. Schmid, “Physical and Chemical Roughness of Alkali-Animonide Cathodes,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpmf080. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpmf080
[24]
S. Karkare, “Less than 10 meV MTE from Cu,” Santa Fe, NM, Oct-2018 [Online]. Available: https://indico.cern.ch/event/759878/contributions/3151738/
[25]
D. Hall, P. Cueva, D. Liarte, M. Liepe, D. Muller, R. Porter, and J. Sethna, “Cavity Quench Studies in Nb3Sn Using Temperature Mapping and Surface Analysis of Cavity Cut-outs,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb041. [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB041.html. [Accessed: 06-Aug-2018]
[26]
D. Hall, D. Liarte, M. Liepe, R. Porter, and J. Sethna, “Field-dependence of the Sensitivity to Trapped Flux in Nb3Sn,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb042 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB042.html
[27]
D. Hall, T. A. Arias, P. Cueva, D. Liarte, M. Liepe, D. Muller, R. Porter, J. Sethna, and M. Sitaraman, “High Performance Nb3Sn Cavities,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-wexa01 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-WEXA01.html
[28]
L. Gupta, S. Baturin, Y.-K. Kim, and S. Nagaitsev, “Design of a One-Dimensional Sextupole Using Semi-Analytic Methods,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, Jun. 2018, doi: 10.18429/JACoW-IPAC2018-THPAF070. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2018/doi/JACoW-IPAC2018-THPAF070.html. [Accessed: 10-Dec-2018]
[29]
L. Gupta, S. Baturin, M. Ehrlichman, Y.-K. Kim, J. Maxson, R. Meller, D. Rubin, D. Sagan, and J. Shanks, “Beam-Based Sextupolar Nonlinearity Mapping in CESR,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpak137. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpak137
[30]
J. Giner Navarro, R. Assmann, D. Cesar, B. Marchetti, D. Marx, and P. Musumeci, “Electron Microscopy Inspired Setup for Single-Shot 4-D Trace Space Reconstruction of Bright Electron Beams,” in Proc. IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpml106 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpml106
[31]
G. Gevorkyan, S. Karkare, S. Emamian, I. V. Bazarov, and H. A. Padmore, “Effects of physical and chemical surface roughness on the brightness of electron beams from photocathodes,” Phys. Rev. Accel. Beams, vol. 21, no. 9, p. 093401, Sep. 2018, doi: 10.1103/PhysRevAccelBeams.21.093401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.093401
[32]
A. Galdi, G. Adhikari, I. Bazarov, L. Cultrera, W. Li, E. Lochocki, J. Maxson, H. Paik, C. Parzyck, C. Pierce, D. Schlom, A. Schroeder, and K. Shen, “Barium Tin Oxide Ordered Photocathodes: First Measurements and Future Perspectives,” in Proc. 9th Int. Particle Accel. Conf., IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupml027 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupml027
[33]
J. Ding, D. Hall, and M. Liepe, “Simulations of RF Field-induced Thermal Feedback in Niobium and Nb3Sn Cavities,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/JACoW-SRF2017-THPB079 [Online]. Available: https://doi.org/10.18429/JACoW-SRF2017-THPB079
[34]
L. Cultrera, J. Bae, A. C. Bartnik, I. V. Bazarov, R. Doane, A. Galdi, C. M. Gulliford, W. H. Li, J. M. Maxson, S. A. McBride, T. P. Moore, C. M. Pierce, C. Xu, and C. University, “Photocathodes R&D for High Brightness and Highly Polarized Electron Beams at Cornell University,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/JACoW-IPAC2018-TUPML028. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2018-TUPML028
[35]
P. Cueva, E. Padget, and D. A. Muller, “A Natural Basis for Unsupervised Machine Learning on Scanning Diffraction Data,” Microsc. Microanal., vol. 24, no. S1, p. 490, Aug. 2018, doi: 10.1017/S1431927618002945. [Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/natural-basis-for-unsupervised-machine-learning-on-scanning-diffraction-data/2B90D32767DC3A0C7714826758A2FC05
[36]
A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, Z. Li, S. G. Tantawi, and S. Weathersby, “rf losses in a high gradient cryogenic copper cavity,” Phys. Rev. Accel. Beams, vol. 21, no. 6, p. 061301, Jun. 2018, doi: 10.1103/PhysRevAccelBeams.21.061301. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.061301
[37]
A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, S. G. Tantawi, and S. Weathersby, “High gradient experiments with X-band cryogenic copper accelerating cavities,” Phys. Rev. Accel. Beams, vol. 21, no. 10, p. 102002, Oct. 2018, doi: 10.1103/PhysRevAccelBeams.21.102002. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102002
[38]
A. Bernstein and R. Rand, “Delay-Coupled Mathieu Equations in Synchrotron Dynamics Revisited: Delay Terms in the Slow Flow,” Journal of Applied Nonlinear Dynamics, vol. 7, pp. 349–360, Dec. 2018, doi: 10.5890/JAND.2018.12.003. [Online]. Available: https://doi.org/10.5890/JAND.2018.12.003
[39]
N. Bell and L. Phillips, “Generation of Flat Ultra-Low Emittance Beams,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpak072. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpak072
[40]
S. S. Baturin and A. Zholents, “Stability condition for the drive bunch in a collinear wakefield accelerator,” Phys. Rev. Accel. Beams, vol. 21, no. 3, p. 031301, Mar. 2018, doi: 10.1103/PhysRevAccelBeams.21.031301. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.031301
[41]
S. S. Baturin, G. Andonian, and J. B. Rosenzweig, “Analytical treatment of the wakefields driven by transversely shaped beams in a planar slow-wave structure,” Phys. Rev. Accel. Beams, vol. 21, no. 12, p. 121302, Dec. 2018, doi: 10.1103/PhysRevAccelBeams.21.121302. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.121302
[42]
J. K. Bae, I. Bazarov, L. Cultrera, S. Karkare, J. Maxson, P. Musumeci, H. Padmore, and X. Shen, “Multi-photon Photoemission and Ultrafast Electron Heating in Cu Photocathodes at Threshold,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupml026. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupml026
[43]
J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H. Padmore, and J. Maxson, “Brightness of femtosecond nonequilibrium photoemission in metallic photocathodes at wavelengths near the photoemission threshold,” Jour. Appl. Phys., vol. 124, no. 24, p. 244903, Dec. 2018, doi: 10.1063/1.5053082. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5053082

2017

[1]
Y. Sakai, I. Gadjev, P. Hoang, N. Majernik, A. Nause, A. Fukasawa, O. Williams, M. Fedurin, B. Malone, C. Swinson, K. Kusche, M. Polyanskiy, M. Babzien, M. Montemagno, Z. Zhong, P. Siddons, I. Pogorelsky, V. Yakimenko, T. Kumita, Y. Kamiya, and J. B. Rosenzweig, “Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime,” Phys. Rev. Accel. Beams, vol. 20, no. 6, p. 060701, Jun. 2017, doi: 10.1103/PhysRevAccelBeams.20.060701. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.060701
[2]
A. Raju, S. Choudhury, D. L. Rubin, A. Wilkinson, and J. P. Sethna, “Finding stability domains and escape rates in kicked Hamiltonians,” arXiv:1707.09336 [cond-mat, physics:physics], Jul. 2017 [Online]. Available: http://arxiv.org/abs/1707.09336
[3]
R. Porter, M. Liepe, J. Maniscalco, and V. Veshcherevich, “Sample Host Cavity Design for Measuring Flux Entry and Quench,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA126. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA126
[4]
R. D. Porter, F. Furuta, D. L. Hall, M. Liepe, J. T. Maniscalco, and C. University, “Effectiveness of Chemical Treatments for Reducing the Surface Roughness of Nb3Sn,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA124. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA124
[5]
J. T. Paul, A. K. Singh, Z. Dong, H. Zhuang, B. C. Revard, B. Rijal, M. Ashton, A. Linscheid, M. Blonsky, D. Gluhovic, J Guo, and R. G. Hennig, “Computational methods for 2D materials: discovery, property characterization, and application design,” J. Phys.: Condens. Matter, vol. 29, no. 47, p. 473001, 2017, doi: 10.1088/1361-648X/aa9305. [Online]. Available: http://stacks.iop.org/0953-8984/29/i=47/a=473001
[6]
J. Maniscalco, F. Furuta, D. Hall, P. Koufalis, and M. Liepe, “Analysis of Mean Free Path and Field Dependent Surface Resistance,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-WEPVA145. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-WEPVA145
[7]
J. Maniscalco, V. Arrieta, D. Hall, M. Liepe, S. McNeal, R. Porter, and B. Williams, “Cornell Sample Host Cavity: Recent Results,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA123. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA123
[8]
J. T. Maniscalco, D. Gonnella, and M. Liepe, “The importance of the electron mean free path for superconducting radio-frequency cavities,” Jour. Appl. Phys., vol. 121, no. 4, p. 043910, Jan. 2017, doi: 10.1063/1.4974909. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/1.4974909
[9]
D. B. Liarte, S. Posen, M. K. Transtrum, G. Catelani, M. Liepe, and J. P. Sethna, “Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates,” Supercond. Sci. Technol., vol. 30, no. 3, p. 033002, 2017, doi: 10.1088/1361-6668/30/3/033002. [Online]. Available: http://stacks.iop.org/0953-2048/30/i=3/a=033002
[10]
D. Hall, D. Liarte, M. Liepe, and J. Sethna, “Impact of Trapped Magnetic Flux and Thermal Gradients on the Performance of Nb3Sn Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA118. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA118
[11]
D. Hall, T. Arias, P. Cueva, M. Liepe, J. Maniscalco, D. Muller, R. Porter, and N. Sitaraman, “Surface Analysis of Features Seen on Nb3Sn Sample Coupons Grown by Vapour Diffusion,” in Proc. of IPAC2017, Copenhagen, Denmark, 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA119 [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA119
[12]
D. Hall, P. Cueva, D. Liarte, M. Liepe, J. Maniscalco, D. Muller, R. Porter, and J. Sethna, “Quench Studies in Single-Cell Nb3Sn Cavities Coated Using Vapour Diffusion,” in Proc. IPAC2017, Copenhagen, Denmark, 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA116 [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA116
[13]
P. Gupta, L. Cultrera, and I. Bazarov, “Monte Carlo simulations of electron photoemission from cesium antimonide,” Journal of Applied Physics, vol. 121, no. 21, p. 215702, Jun. 2017, doi: 10.1063/1.4984263. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.4984263. [Accessed: 16-Jan-2018]
[14]
Z. Ding, S. Karkare, J. Feng, D. Filippetto, M. Johnson, S. Virostek, F. Sannibale, J. Nasiatka, M. Gaowei, J. Sihsheimer, E. Muller, J. Smedley, and H. Padmore, “Temperature-dependent quantum efficiency degradation of K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method,” Phys. Rev. Accel. Beams, vol. 20, no. 11, p. 113401, Nov. 2017, doi: 10.1103/PhysRevAccelBeams.20.113401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.113401
[15]
D. A. Dimitrov, G. I. Bell, J. Smedley, I. Ben-Zvi, J. Feng, S. Karkare, and H. A. Padmore, “Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes,” Jour. Appl. Phys., vol. 122, no. 16, p. 165303, Oct. 2017, doi: 10.1063/1.4996568. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.4996568. [Accessed: 17-Nov-2017]
[16]
O. Chubenko, S. Baturin, A. Sumant, A. Zinovev, K. K. Kovi, and S. Baryshev, “Field emission microscopy of ultra-nano-crystalline diamond films,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jul. 2017, doi: 10.1109/IVNC.2017.8051543. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051543
[17]
O. Chubenko, S. S. Baturin, K. K. Kovi, A. V. Sumant, and S. V. Baryshev, “Locally Resolved Electron Emission Area and Unified View of Field Emission from Ultrananocrystalline Diamond Films,” ACS Appl Mater Interfaces, vol. 9, no. 38, pp. 33229–33237, Sep. 2017, doi: 10.1021/acsami.7b07062. [Online]. Available: https://doi.org/10.1021/acsami.7b07062
[18]
O. Chubenko, A. Afanasev, S. S. Baturin, and S. V. Baryshev, “Locally resolved field emission area and its effect on resulting j-E characteristics: Case study for planar thin film ultrananocrystalline diamond field emitters,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jul. 2017, doi: 10.1109/IVNC.2017.8051647. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051647
[19]
A. Cahill, A. Fukasawa, C. Limborg, W. Qin, and J. Rosenzweig, “Optimization of Beam Dynamics for an S-Band Ultra-High Gradient Photoinjector,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-TUPAB129. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-TUPAB129
[20]
A. Cahill, V. Dolgashev, J. Rosenzweig, S. Tantawi, and S. Weathersby, “Ultra High Gradient Breakdown Rates in X-Band Cryogenic Normal Conducting Rf Accelerating Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-THPIK125. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-THPIK125
[21]
S. Baturin, A. Zinovev, and S. Baryshev, “Vacuum Effect on Field Emission I-V curves,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jun. 2017, doi: 10.1109/IVNC.2017.8051638. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051638
[22]
S. S. Baturin, A. V. Zinovev, and S. V. Baryshev, “Current Saturation in Nonmetallic Field Emitters,” arXiv:1710.03692 [cond-mat, physics:physics], Oct. 2017, doi: http://arxiv.org/abs/1710.03692. [Online]. Available: http://arxiv.org/abs/1710.03692
[23]
S. S. Baturin and S. V. Baryshev, “Electron emission projection imager,” Review of Scientific Instruments, vol. 88, no. 3, p. 033701, Mar. 2017, doi: 10.1063/1.4977472. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/1.4977472
[24]
S. S. Baturin and A. Zholents, “Upper limit for the accelerating gradient in the collinear wakefield accelerator as a function of the transformer ratio,” Phys. Rev. Accel. Beams, vol. 20, no. 6, p. 061302, Jun. 2017, doi: 10.1103/PhysRevAccelBeams.20.061302. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.061302
[25]
M. Ashton, J. Paul, S. B. Sinnott, and R. G. Hennig, “Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials,” Phys. Rev. Lett., vol. 118, no. 10, p. 106101, Mar. 2017, doi: 10.1103/PhysRevLett.118.106101. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.118.106101

2016


[1]
D. B. Liarte, M. K. Transtrum, and J. P. Sethna, “Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors,” Phys. Rev. B, vol. 94, no. 14, p. 144504, Oct. 2016, doi: 10.1103/PhysRevB.94.144504. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.94.144504

Pre-award Publications

[1]
A. Bernstein and R. Rand, “Delay-Coupled Mathieu Equations in Synchrotron Dynamics Revisited: Delay Terms in the Slow Flow,” Journal of Applied Nonlinear Dynamics, vol. 7, pp. 349–360, Dec. 2018, doi: 10.5890/JAND.2018.12.003. [Online]. Available: https://doi.org/10.5890/JAND.2018.12.003