Skip to main content

The Center for Bright Beams, A National Science Foundation Science and Technology Center

Publications

Publications by Year


2022

[1]
N. S. Sitaraman, Z. Sun, B. Francis, A. C. Hire, T. Oseroff, Z. Baraissov, T. A. Arias, R. Hennig, M. U. Liepe, D. A. Muller, and M. K. Transtrum, “Theory of Nb-Zr Alloy Superconductivity and First Experimental Demonstration for Superconducting Radio-Frequency Cavity Applications,” Aug. 2022, doi: 10.48550/arXiv.2208.10678. [Online]. Available: http://arxiv.org/abs/2208.10678
[2]
J. Jarvis, V. Lebedev, A. Romanov, D. Broemmelsiek, K. Carlson, S. Chattopadhyay, A. Dick, D. Edstrom, I. Lobach, S. Nagaitsev, H. Piekarz, P. Piot, J. Ruan, J. Santucci, G. Stancari, and A. Valishev, “Experimental demonstration of optical stochastic cooling,” Nature, vol. 608, no. 7922, pp. 287–292, Aug. 2022, doi: 10.1038/s41586-022-04969-7. [Online]. Available: https://www.nature.com/articles/s41586-022-04969-7
[3]
F. Bosco, O. Camacho, M. Carillo, E. Chiadroni, L. Faillace, A. Fukasawa, A. Giribono, L. Giuliano, N. Najernik, A. Mostacci, L. Palumbo, B. Spataro, C. Vaccarezza, J. B. Rosenzweig, and M. Migliorati, “A fast tracking code for evaluating collective effects in linear accelerators.” arXiv, Aug. 12, 2022 [Online]. Available: http://arxiv.org/abs/2208.06466
[4]
M. Gordon, W. H. Li, M. B. Andorf, A. C. Bartnik, C. J. R. Duncan, M. Kaemingk, C. A. Pennington, I. V. Bazarov, Y.-K. Kim, and J. M. Maxson, “Four-dimensional emittance measurements of ultrafast electron diffraction optics corrected up to sextupole order,” Phys. Rev. Accel. Beams, vol. 25, no. 8, p. 084001, Aug. 2022, doi: 10.1103/PhysRevAccelBeams.25.084001. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.084001
[5]
C. Zhang, Y.-T. Shao, Z. Baraissov, C. J. Duncan, A. Hanuka, A. L. Edelen, J. M. Maxson, and D. A. Muller, “Bayesian Optimization for Multi-dimensional Alignment: Tuning Aberration Correctors and Ptychographic Reconstructions,” Microsc Microanal, vol. 28, no. S1, pp. 3146–3148, Aug. 2022, doi: 10.1017/S1431927622011692. [Online]. Available: https://www.cambridge.org/core/product/identifier/S1431927622011692/type/journal_article
[6]
M. Andorf, J. K. Bae, A. Bartnik, I. Bazarov, L. Cultrera, and J. Maxson, “HERACLES: A High Average Current Electron Beamline for Lifetime Testing of Novel Photocathodes,” in Proceedings of the 13th International Particle Accelerator Conference, 2022, vol. IPAC2022, doi: 10.18429/JACOW-IPAC2022-THPOMS036 [Online]. Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-THPOMS036.html
[7]
V. Khachatryan, M. Andorf, I. Bazarov, W. Bergan, J. Crittenden, S. Levenson, J. Maxson, D. Rubin, J. Shanks, and S. Wang, “Helical Wiggler Design for Optical Stochastic Cooling at CESR,” in Proceedings of the 13th International Particle Accelerator Conference, 2022, vol. IPAC2022, doi: 10.18429/JACOW-IPAC2022-THPOPT066 [Online]. Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-THPOPT066.html
[8]
C. V. Frederick (Eric), D. Filippetto, A. Gilardi, P. Musumeci, S. Paiagua, A. Scheinker, and D. Wang, “Toward Machine Learning-Based Adaptive Control and Global Feedback for Compact Accelerators,” in Proceedings of the 13th International Particle Accelerator Conference, 2022, vol. IPAC2022, doi: 10.18429/JACOW-IPAC2022-TUPOST055 [Online]. Available: https://jacow.org/ipac2022/doi/JACoW-IPAC2022-TUPOST055.html
[9]
P. Denham and P. Musumeci, “Analytical Scaling Laws for Radiofrequency Based Pulse Compression in Ultrafast Electron Diffraction Beamlines.” arXiv, Jun. 03, 2021 [Online]. Available: http://arxiv.org/abs/2106.02102
[10]
M. Gordon, S. B. van der Geer, J. Maxson, and Y.-K. Kim, “Point-to-point Coulomb effects in high brightness photoelectron beam lines for ultrafast electron diffraction,” Phys. Rev. Accel. Beams, vol. 24, no. 8, p. 084202, Aug. 2021, doi: 10.1103/PhysRevAccelBeams.24.084202. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.084202
[11]
A. J. Dick and P. Piot, “Electron Beam Shaping Techniques Using Optical Stochastic Cooling,” in Proc. IPAC2022, Bangkok, Thailand, Jun. 2022.
[12]
S. Levenson J., M. B. Andorf, I. V. Bazarov, D. C. Burke, J. M. Maxson, D. L. Rubin, and S. Wang, “Light Path Construction for an Optical Stochastic Cooling Stability Test at the Cornell Electron Storage Ring,” in Proc. IPAC2022, Bangkok, Thailand, Jun. 2022.
[13]
S. Levenson J., M. B. Andorf, I. V. Bazarov, V. Khachatryan, J. M. Maxson, D. L. Rubin, and S. Wang, “A Path-Length Stability Experiment for Optical Stochastic Cooling at the Cornell Electron Storage Ring,” in Proc. IPAC2022, Bangkok, Thailand, Jun. 2022.
[14]
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto, “Adaptive deep learning for time-varying systems with hidden parameters: Predicting changing input beam distributions of compact particle accelerators,” arXiv arXiv:2102.10510, Mar. 2021 [Online]. Available: http://arxiv.org/abs/2102.10510
[15]
C. Pennington, “Testing Alkali Antimonide Photocathodes in High Gradient Injectors,” SLAC, Menlo Park, CA, Nov. 2021 [Online]. Available: https://conf.slac.stanford.edu/photocathode-physics-photoinjectors-2021/agenda
[16]
J. B. Rosenzweig, N. Majernik, R. R. Robles, G. Andonian, O. Camacho, A. Fukasawa, A. Kogar, G. Lawler, J. Miao, P. Musumeci, B. Naranjo, Y. Sakai, R. Candler, B. Pound, C. Pellegrini, C. Emma, A. Halavanau, J. Hastings, Z. Li, M. Nasr, S. Tantawi, P. Anisimov, B. Carlsten, F. Krawczyk, E. Simakov, L. Faillace, M. Ferrario, B. Spataro, S. Karkare, J. Maxson, Y. Ma, J. Wurtele, A. Murokh, A. Zholents, A. Cianchi, D. Cocco, and S. B. van der Geer, “An ultra-compact x-ray free-electron laser,” New J. Phys., vol. 22, no. 9, p. 093067, Sep. 2020, doi: 10.1088/1367-2630/abb16c. [Online]. Available: https://doi.org/10.1088/1367-2630/abb16c
[17]
J. K. Bae, A. Galdi, L. Cultrera, F. Ikponmwen, J. Maxson, and I. Bazarov, “Improved lifetime of a high spin polarization superlattice photocathode,” Journal of Applied Physics, vol. 127, no. 12, p. 124901, Mar. 2020, doi: 10.1063/1.5139674. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.5139674
[18]
C. J. R. Duncan, M. Kaemingk, W. H. Li, M. B. Andorf, A. C. Bartnik, A. Galdi, M. Gordon, C. A. Pennington, I. V. Bazarov, H. J. Zeng, F. Liu, D. Luo, A. Sood, A. M. Lindenberg, M. W. Tate, D. A. Muller, J. Thom-Levy, S. M. Gruner, and J. M. Maxson, “Multi-scale time-resolved electron diffraction enabled by high repetition rate, high dynamic range direct electron detection.” arXiv, Jun. 16, 2022 [Online]. Available: http://arxiv.org/abs/2206.08404
[19]
L. Faillace, R. Agustsson, M. Behtouei, F. Bosco, D. Bruhwiler, O. Camacho, M. Carillo, A. Fukasawa, I. Gadjev, A. Giribono, L. Giuliano, S. Kutsaev, N. Majernik, M. Migliorati, A. Mostacci, A. Murokh, L. Palumbo, B. Spataro, S. Tantawi, C. Vaccarezza, O. Williams, and J. B. Rosenzweig, “High field hybrid photoinjector electron source for advanced light source applications,” Phys. Rev. Accel. Beams, vol. 25, no. 6, p. 063401, Jun. 2022, doi: 10.1103/PhysRevAccelBeams.25.063401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.063401
[20]
J. K. Nangoi, M. Gaowei, A. Galdi, J. M. Maxson, S. Karkare, J. Smedley, and T. A. Arias, “Ab initio study of the crystal and electronic structure of mono- and bi-alkali antimonides: Stability, Goldschmidt-like tolerance factors, and optical properties,” arXiv, arXiv:2205.14322, May 2022 [Online]. Available: http://arxiv.org/abs/2205.14322
[21]
J. K. Bae, M. Andorf, A. Bartnik, A. Galdi, L. Cultrera, J. Maxson, and I. Bazarov, “Operation of Cs-Sb-O activated GaAs in a high voltage DC electron gun at high average current,” arXiv, arXiv:2205.13632, May 2022 [Online]. Available: http://arxiv.org/abs/2205.13632
[22]
J. Mann and J. Rosenzweig, “A Coherent Bi-Directional Virtual Detector for the 1-D Schr\"odinger Equation,” arXiv, arXiv:2205.10461, May 2022 [Online]. Available: http://arxiv.org/abs/2205.10461
[23]
Montgomery, C. Jing, S. Poddar, O. Chubenko, G. Gevorkyan, S. Karkare, P. Saha, H. A. Padmore, R. G. Hennig, and J. T. Paul, “Towards Ultra-Smooth Alkali Antimonide Photocathode Epitaxy,” in Proc. IPAC 2021, Campinas, SP, Brazil, May 2021, doi: 10.18429/JACoW-IPAC2021-WEPAB169 [Online]. Available: https://accelconf.web.cern.ch/ipac2021/papers/wepab169.pdf
[24]
A. Dick, J. Jarvis, and P. Piot, “Characterization of the Sub-mm Delay Plates for the IOTA Optical-Stochastic-Cooling Experiment,” FERMILAB-FN-1130-AD, 1827262, oai:inspirehep.net:1950815, Jul. 2021 [Online]. Available: https://www.osti.gov/servlets/purl/1827262/
[25]
J. P. Gonzalez-Aguilera, R. Roussel, Y.-K. Kim, W. Liu, P. Piot, J. G. Power, and E. Wisniewski, “Beam Diagnostics for Multi-Objective Bayesian Optimization at the Argonne Wakefield Accelerator Facility,” in Proc. IPAC 2021, Campinas, SP, Brazil, May 2021, doi: 10.18429/JACoW-IPAC2021-MOPAB304 [Online]. Available: https://accelconf.web.cern.ch/ipac2021/papers/mopab304.pdf
[26]
A. A. McMillan, “Surface Stability, Phonon Band Structure, and Vibrational Dybnammics of the Nb(100) Surface Oxide Reconstruction,” Ph.D. thesis, University of Chicago, Chicago, IL, 2022.
[27]
V. Guo, P. Denham, P. Musumeci, A. Ody, and Y. Park, “4D Beam Tomography at the UCLA PEGASUS Laboratory,” in Proc. IBIC2021, Pohang, Rep. of Korea, May 2021, doi: 10.18429/JACoW-IBIC2021-TUPP15 [Online]. Available: https://accelconf.web.cern.ch/ibic2021/papers/tupp15.pdf
[28]
T. Oseroff, M. U. Liepe, and Z. Sun, “Sample Test Systems for Next-Gen SRF Surfaces,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-TUOFDV07 [Online]. Available: https://srf2021.vrws.de/papers/tuofdv07.pdf
[29]
Z. Sun, M. U. Liepe, T. Oseroff, and X. Deng, “Characterization of Atomic-Layer-Deposited NbTiN and NbTiN/AlN Films for SIS Multilayer Structures,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-WEPTEV012 [Online]. Available: https://srf2021.vrws.de/papers/weptev012.pdf
[30]
R. D. Porter, N. Banerjee, and M. U. Liepe, “Dynamics of RF Dissipation Probed via High-speed Temperature Mapping,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-TUOFDV05 [Online]. Available: https://srf2021.vrws.de/papers/tuofdv05.pdf
[31]
G. Gaitan, A. T. Holic, G. Kulina, J. Sears, M. U. Liepe, P. Bishop, and Z. Sun, “Development of a System for Coating SRF Cavities using Remote Plasma CVD,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-SUPTEV007 [Online]. Available: https://srf2021.vrws.de/papers/suptev007.pdf
[32]
K. Howard, Z. Sun, and M. U. Liepe, “Thermal Annealing of Sputtered Nb3Sn and V3Si Thin Films for Superconducting RF Cavities,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-SUPFDV009 [Online]. Available: https://srf2021.vrws.de/papers/supfdv009.pdf
[33]
R. D. Porter, N. Banerjee, and M. U. Liepe, “Dynamic Temperature Mapping of Nb3Sn Cavities,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-SUPCAV003 [Online]. Available: https://srf2021.vrws.de/papers/supcav003.pdf
[34]
R. D. Porter, “Advancing the Maximum Accelerating Gradient of Niobium-3 Tin Superconducting Radiofrequency Accelerator Cavities: RF Measuremebts, Dynamic Temperature Mapping, and Material Growth,” Ph.D. thesis, Cornell University, 2021 [Online]. Available: https://www.classe.cornell.edu/rsrc/Home/Research/SRF/SrfDissertations/Porter_dissertation.pdf
[35]
Z. Sun, M. U. Liepe, T. Oseroff, R. D. Porter, T. A. Arias, Z. Baraissov, D. A. Muller, N. Sitaraman, D. Johnson-McDaniel, M. Salim, and C. Dukes, “Surface Oxides on Nb and Nb3Sn Surfaces: Toward a Deeper Understanding,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-THPTEV004 [Online]. Available: https://srf2021.vrws.de/papers/thptev004.pdf
[36]
Z. Sun, G. Gaitan, M. Ge, K. Howard, M. U. Liepe, R. D. Porter, T. Oseroff, T. A. Arias, Z. Baraissov, M. Kelley, D. A. Muller, J. Sethna, N. Sitamaran, and K. D. Dobson, “Toward Stoichiometric and Low-Surface-Roughness Nb3Sn Thin Films via Direct Electrochemical Deposition,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-WEOTEV03 [Online]. Available: https://srf2021.vrws.de/papers/weotev03.pdf
[37]
N. Sitaraman, T. A. Arias, Z. Baraissov, M. M. Kelley, D. A. Muller, M. U. Liepe, R. D. Porter, and Z. Sun, “New recipes to optimize the Niobium Oxide surface from first-principles calculations,” in Proc. SRF ’21, Lansing, MI, Jun. 2021, doi: 10.18429/JACoW-SRF2021-TUPFDV010 [Online]. Available: https://srf2021.vrws.de/papers/tupfdv010.pdf
[38]
P. Saha, O. Chubenko, G. S. Gevorkyan, A. Kachwala, C. J. Knill, C. Sarabia-Cardenas, E. Montgomery, S. Poddar, J. T. Paul, R. G. Hennig, H. A. Padmore, and S. Karkare, “Physically and chemically smooth cesium-antimonide photocathodes on single crystal strontium titanate substrates,” Appl. Phys. Lett., vol. 120, no. 19, p. 194102, May 2022, doi: 10.1063/5.0088306. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/5.0088306
[39]
L. Cultrera, E. Rocco, F. Shahedipour-Sandvik, L. D. Bell, J. K. Bae, I. V. Bazarov, P. Saha, S. Karkare, and A. Arjunan, “Photoemission characterization of N-polar III-nitride photocathodes as candidate bright electron beam sources for accelerator applications,” Journal of Applied Physics, vol. 131, no. 12, p. 124902, Mar. 2022, doi: 10.1063/5.0076488. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/5.0076488
[40]
A. A. McMillan, C. J. Thompson, M. M. Kelley, J. D. Graham, T. A. Arias, and S. J. Sibener, “A combined helium atom scattering and density-functional theory study of the Nb(100) surface oxide reconstruction: Phonon band structures and vibrational dynamics,” J. Chem. Phys., vol. 156, no. 12, p. 124702, Mar. 2022, doi: 10.1063/5.0085653. [Online]. Available: https://aip.scitation.org/doi/10.1063/5.0085653
[41]
C. T. Parzyck, A. Galdi, J. K. Nangoi, W. J. I. DeBenedetti, J. Balajka, B. D. Faeth, H. Paik, C. Hu, T. A. Arias, M. A. Hines, D. G. Schlom, K. M. Shen, and J. M. Maxson, “Single-Crystal Alkali Antimonide Photocathodes: High Efficiency in the Ultrathin Limit,” Phys. Rev. Lett., vol. 128, no. 11, p. 114801, Mar. 2022, doi: 10.1103/PhysRevLett.128.114801. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.128.114801
[42]
W. H. Li, C. J. R. Duncan, M. B. Andorf, A. C. Bartnik, E. Bianco, L. Cultrera, A. Galdi, M. Gordon, M. Kaemingk, C. A. Pennington, L. F. Kourkoutis, I. V. Bazarov, and J. M. Maxson, “A kiloelectron-volt ultrafast electron micro-diffraction apparatus using low emittance semiconductor photocathodes,” Structural Dynamics, vol. 9, no. 2, p. 024302, Mar. 2022, doi: 10.1063/4.0000138. [Online]. Available: https://aca.scitation.org/doi/10.1063/4.0000138
[43]
J. Jarvis, V. Lebedev, A. Romanov, D. Broemmelsiek, K. Carlson, S. Chattopadhyay, A. Dick, D. Edstrom, I. Lobach, S. Nagaitsev, H. Piekarz, P. Piot, J. Ruan, J. Santucci, G. Stancari, and A. Valishev, “First Experimental Demonstration of Optical Stochastic Cooling,” arXiv:2203.08899 [physics], Mar. 2022, doi: 10.48550/arXiv.2203.08899. [Online]. Available: http://arxiv.org/abs/2203.08899
[44]
J. B. Gibson, A. C. Hire, and R. G. Hennig, “Data-Augmentation for Graph Neural Network Learning of the Relaxed Energies of Unrelaxed Structures,” arXiv:2202.13947 [physics], Feb. 2022, doi: 10.48550/arXiv.2202.13947. [Online]. Available: http://arxiv.org/abs/2202.13947
[45]
M. Gordon, W. H. Li, Maxson, J., and Kim, Young-Kee, “APS -APS April Meeting 2022 - Event - Ultrafast Electron Diffraction with Stray Sextupole Field Correction,” in Bulletin of the American Physical Society, Apr. 2022 [Online]. Available: https://meetings.aps.org/Meeting/APR22/Session/B07.1
[46]
J. N. Nelson, N. J. Schreiber, A. B. Georgescu, B. H. Goodge, B. D. Faeth, C. T. Parzyck, C. Zeledon, L. F. Kourkoutis, A. J. Millis, A. Georges, D. G. Schlom, and K. M. Shen, “Interfacial charge transfer and persistent metallicity of ultrathin SrIrO3/SrRuO3 heterostructures,” Science Advances, vol. 8, no. 5, p. eabj0481, Feb. 2022, doi: 10.1126/sciadv.abj0481. [Online]. Available: https://www.science.org/doi/full/10.1126/sciadv.abj0481
[47]
S. Deyo, M. Kelley, N. Sitaraman, T. Oseroff, D. B. Liarte, T. Arias, M. Liepe, and J. P. Sethna, “Dissipation by surface states in superconducting RF cavities,” arXiv:2201.07747 [cond-mat, physics:physics], Jan. 2022, doi: 10.48550/arXiv.2201.07747. [Online]. Available: http://arxiv.org/abs/2201.07747
[48]
V. Yu, C. Hansel, G. Lawler, J. Mann, M. Mills, and J. Rosenzweig, “Magneto-Optical Trap Cathode for High Brightness Applications,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB344. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB344.html
[49]
Y. Shao, G. Lawler, B. Naranjo, and J. Rosenzweig, “Tapered Modular Quadrupole Magnet to Reduce Higher-Order Optical Aberrations,” in Proceedings of the 12th International Particle Accelerator Conference, 2021, vol. IPAC2021, doi: 10.18429/JACOW-IPAC2021-THPAB328 [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB328.html
[50]
J. Mann, T. Arias, G. Lawler, J. K. Nangoi, and J. Rosenzweig, “Simulations of Nanoblade-Enhanced Laser-Induced Cathode Emissions and Analyses of Yield, MTE, and Brightness,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB147. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB147.html
[51]
G. Lawler, N. Majernik, and J. Rosenzweig, “Cryogenic Component and Material Testing for Compact Electron Beamlines,” in Proceedings of the 12th International Particle Accelerator Conference, 2021, vol. IPAC2021, p. 4 pages, 0.680 MB, doi: 10.18429/JACOW-IPAC2021-WEPAB098 [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB098.html
[52]
G. Lawler, J. Mann, J. Rosenzweig, R. Roussel, and V. Yu, “Initial Nanoblade-Enhanced Laser-Induced Cathode Emission Measurements,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 1.601 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB097. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB097.html
[53]
G. Lawler, A. Fukasawa, Z. Li, N. Majernik, J. Rosenzweig, A. Suraj, and M. Yadav, “RF Testbed for Cryogenic Photoemission Studies,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.968 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB096. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB096.html
[54]
A. Fukasawa, G. Andonian, O. Camacho, C. Hansel, G. Lawler, Z. Li, W. Lynn, N. Majernik, J. Mann, P. Manwani, B. Naranjo, R. Robles, J. Rosenzweig, Y. Sakai, S. Tantawi, O. Williams, and M. Yadav, “Advanced Photoinjector Development at the UCLA SAMURAI Laboratory,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.298 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB056. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB056.html
[55]
N. Majernik, G. Andonian, O. Camacho, A. Fukasawa, G. Lawler, W. Lynn, B. Naranjo, R. Robles, J. Rosenzweig, Y. Sakai, and O. Williams, “Demonstration FELs Using UC-XFEL Technologies at the SAMURAI Laboratory,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.266 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB092. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB092.html
[56]
Y. Gao, W. Lin, K. A. Brown, X. Gu, G. H. Hoffstaetter, J. Morris, and S. Seletskiy, “Bayesian optimization experiment for trajectory alignment at the low energy RHIC electron cooling system,” Phys. Rev. Accel. Beams, vol. 25, no. 1, p. 014601, Jan. 2022, doi: 10.1103/PhysRevAccelBeams.25.014601. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.014601
[57]
A. Romanov, S. Nagaitsev, J. Santucci, G. Stancari, A. Valishev, N. Kuklev, and I. Lobach, “3D Tracking of Single Electron in IOTA,” in IPAC 2021, Campinas, SP, Brazil, 2021, doi: 10.18429/JACoW-IPAC2021-THXB01 [Online]. Available: https://accelconf.web.cern.ch/ipac2021/papers/thxb01.pdf

2021

[1]
C. T. Parzyck, A. Galdi, J. K. Nangoi, W. J. I. DeBenedetti, J. Balajka, B. D. Faeth, H. Paik, C. Hu, T. A. Arias, M. A. Hines, D. G. Schlom, K. M. Shen, and J. M. Maxson, “A single-crystal alkali antimonide photocathode: high efficiency in the ultra-thin limit,” arXiv:2112.14366 [cond-mat, physics:physics], Dec. 2021, doi: 10.48550/arXiv.2112.14366. [Online]. Available: http://arxiv.org/abs/2112.14366
[2]
R. G. Farber, S. A. Willson, and S. J. Sibener, “Role of nanoscale surface defects on Sn adsorption and diffusion behavior on oxidized Nb(100),” Journal of Vacuum Science & Technology A, vol. 39, no. 6, p. 063212, Dec. 2021, doi: 10.1116/6.0001374. [Online]. Available: https://avs.scitation.org/doi/full/10.1116/6.0001374
[3]
W. H. Li, C. J. R. Duncan, M. B. Andorf, A. C. Bartnik, E. Bianco, L. Cultrera, A. Galdi, M. Gordon, M. Kaemingk, C. A. Pennington, L. F. Kourkoutis, I. V. Bazarov, and J. M. Maxson, “A kiloelectron-volt ultrafast electron micro-diffraction apparatus using low emittance semiconductor photocathodes,” arXiv:2111.07922 [physics], Nov. 2021, doi: 10.48550/arXiv.2111.07922. [Online]. Available: http://arxiv.org/abs/2111.07922
[4]
G. Ha, K.-J. Kim, P. Piot, J. G. Power, and Y. Sun, “Bunch Shaping in Electron Linear Accelerators,” arXiv:2111.00520 [physics], Oct. 2021, doi: 10.48550/arXiv.2111.00520. [Online]. Available: http://arxiv.org/abs/2111.00520
[5]
L. Cultrera, E. Rocco, F. Shahedipour-Sandvik, L. D. Bell, J. K. Bae, I. V. Bazarov, P. Saha, S. Karkare, and A. Arjunan, “Photoemission characterization of N-polar III-Nitride photocathodes as bright electron beam source for accelerator applications,” arXiv:2110.01533 [physics], Oct. 2021, doi: 10.48550/arXiv.2110.01533. [Online]. Available: http://arxiv.org/abs/2110.01533
[6]
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto, “An adaptive approach to machine learning for compact particle accelerators,” Sci Rep, vol. 11, no. 1, p. 19187, Sep. 2021, doi: 10.1038/s41598-021-98785-0. [Online]. Available: https://www.nature.com/articles/s41598-021-98785-0
[7]
J. Lim, A. C. Hire, Y. Quan, J. S. Kim, S. R. Xie, R. S. Kumar, D. Popov, C. Park, R. J. Hemley, J. J. Hamlin, R. G. Hennig, P. J. Hirschfeld, and G. R. Stewart, “Creating superconductivity in WB2 through pressure-induced metastable planar defects,” arXiv:2109.11521 [cond-mat], Sep. 2021, doi: 10.48550/arXiv.2109.11521. [Online]. Available: http://arxiv.org/abs/2109.11521
[8]
J. K. Nangoi, S. Karkare, R. Sundararaman, H. A. Padmore, and T. A. Arias, “Importance of bulk excitations and coherent electron-photon-phonon scattering in photoemission from PbTe(111): Ab initio theory with experimental comparisons,” Physical Review B, vol. 104, no. 11, Sep. 2021, doi: 10.1103/physrevb.104.115132. [Online]. Available: https://arxiv.org/abs/2006.11924
[9]
J. T. Paul, A. Galdi, C. Parzyck, K. M. Shen, J. Maxson, and R. G. Hennig, “Computational synthesis of substrates by crystal cleavage,” npj Comput Mater, vol. 7, no. 1, pp. 1–6, Sep. 2021, doi: 10.1038/s41524-021-00608-3. [Online]. Available: https://www.nature.com/articles/s41524-021-00608-3
[10]
V. Guo, P. Denham, P. Musumeci, A. Ody, and Y. Park, “4D Beam Tomography at the ULCA,” in IBIC 2021, Seoul, Sep. 2021.
[11]
T. Y. Posos, O. Chubenko, and S. V. Baryshev, “Confirmation of Transit-Time Limited Field Emission in Advanced Carbon Materials with Fast Pattern Recognition Algorithm,” arXiv:2108.07440 [physics], Aug. 2021, doi: 10.48550/arXiv.2108.07440. [Online]. Available: http://arxiv.org/abs/2108.07440
[12]
O. Chubenko, S. Karkare, D. A. Dimitrov, J. K. Bae, L. Cultrera, I. Bazarov, and A. Afanasev, “Monte Carlo modeling of spin-polarized photoemission from p-doped bulk GaAs,” Journal of Applied Physics, vol. 130, no. 6, p. 063101, Aug. 2021, doi: 10.1063/5.0060151. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/5.0060151
[13]
J. Lim, A. C. Hire, Y. Quan, J. Kim, L. Fanfarillo, S. R. Xie, R. S. Kumar, C. Park, R. J. Hemley, Y. K. Vohra, R. G. Hennig, P. J. Hirschfeld, G. R. Stewart, and J. J. Hamlin, “High-pressure study of the low-Z rich superconductor Be22Re,” Phys. Rev. B, vol. 104, no. 6, p. 064505, Aug. 2021, doi: 10.1103/PhysRevB.104.064505. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.104.064505
[14]
D. B. Durham, C. M. Pierce, F. Riminucci, S. R. Loria, K. Kanellopulos, I. Bazarov, J. Maxson, S. Cabrini, A. M. Minor, and D. Filippetto, “Characterizing plasmon-enhanced photoemitters for bright ultrafast electron beams,” in Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX, Aug. 2021, vol. 11797, p. 117972D, doi: 10.1117/12.2597708 [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11797/117972D/Characterizing-plasmon-enhanced-photoemitters-for-bright-ultrafast-electron-beams/10.1117/12.2597708.short
[15]
C. Zhang, Z. Baraissov, C. Duncan, A. Hanuka, A. Edelen, J. Maxson, and D. Muller, “Aberration Corrector Tuning with Machine-Learning-Based Emittance Measurements and Bayesian Optimization,” Microscopy and Microanalysis, vol. 27, no. S1, pp. 810–812, Aug. 2021, doi: 10.1017/S1431927621003214. [Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/aberration-corrector-tuning-with-machinelearningbased-emittance-measurements-and-bayesian-optimization/D89FA657D93568EE0A1DC768248FDFC0
[16]
N. Majernik, G. Andonian, R. Roussel, S. Doran, G. Ha, J. Power, E. Wisniewski, and J. Rosenzweig, “Multileaf Collimator for Real-Time Beam Shaping using Emittance Exchange,” arXiv:2107.00125 [physics], Jun. 2021, doi: 10.48550/arXiv.2107.00125. [Online]. Available: http://arxiv.org/abs/2107.00125
[17]
R. Roussel, J. P. Gonzalez-Aguilera, Y.-K. Kim, E. Wisniewski, W. Liu, P. Piot, J. Power, A. Hanuka, and A. Edelen, “Turn-Key Constrained Parameter Space Exploration for Particle Accelerators Using Bayesian Active Learning,” arXiv:2106.09202 [physics], Jun. 2021, doi: 10.48550/arXiv.2106.09202. [Online]. Available: http://arxiv.org/abs/2106.09202
[18]
A. Galdi, J. Balajka, W. J. I. DeBenedetti, L. Cultrera, I. V. Bazarov, M. A. Hines, and J. M. Maxson, “Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates,” Appl. Phys. Lett., vol. 118, no. 24, p. 244101, Jun. 2021, doi: 10.1063/5.0053186. [Online]. Available: https://aip.scitation.org/doi/10.1063/5.0053186
[19]
R. Roussel, A. Hanuka, and A. Edelen, “Multiobjective Bayesian optimization for online accelerator tuning,” Phys. Rev. Accel. Beams, vol. 24, no. 6, p. 062801, Jun. 2021, doi: 10.1103/PhysRevAccelBeams.24.062801. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.24.062801
[20]
J. Mann and J. Rosenzweig, “Semi-Classical Cutoff Energies for Electron Emission and Scattering at Field-Enhancing Nanostructures with Large Ponderomotive Amplitudes,” arXiv:2105.10601 [cond-mat], May 2021, doi: 10.48550/arXiv.2105.10601. [Online]. Available: http://arxiv.org/abs/2105.10601
[21]
Kuklev, Nikita, Valishev, Alexander, Nagaitsev, Sergei, and Kim, Young-Kee, “Experimental Studies of Beam Dynamics in Integrable Storage Rings,” in Bulletin of the American Physical Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/Z07.3
[22]
Manwani, Pratik, Majernik, Nathan, Hansel, Claire, and Rosenzweig, James, “Optical-period bunch trains to resonantly excite TV/m wakefields in the quasi-nonlinear regime and the E-317 experiment at FACET-II,” in Bulletin of the American Physical Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/T08.3
[23]
Hansel, Claire, Yadav, Monika, An, Weiming, Manwani, Pratik, Mori, Warren, and J. Rosenzweig, “Plasma Wakefield Accelerators with Ion Motion and the E-314 Experiment at FACET-II,” in Bulletin of the American Physical Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/T08.2
[24]
Gordon, Matthew, Van Der Geer, S.B., Maxson, Jared, and Kim, Young-Kee, “Point-to-Point Coulomb Effects in High Brightness Photoelectron Beamlines for Ultrafast Electron Diffraction,” in Bulletin of the American Physical Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/T08.5
[25]
Roussel, Ryan, Hanuka, Adi, and Edelen, Auralee, “Multi-Objective Bayesian Optimization for Online Accelerator Tuning,” in Bulletin of the American Physical Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/E15.7
[26]
Gupta, Lipi, Mishra, Aashwin, and Edelen, Auralee, “Deep Learning Methods for Uncertainty Quantification at the SLAC Linac Coherent Light Source,” in Bulletin of the American Physical Society, Apr. 2021 [Online]. Available: https://meetings.aps.org/Meeting/APR21/Session/E15.9
[27]
S. T. Wang, M. B. Andorf, I. V. Bazarov, W. F. Bergan, V. Khachatryan, J. M. Maxson, and D. L. Rubin, “Simulation of transit-time optical stochastic cooling process in Cornell Electron Storage Ring,” arXiv:2103.16419 [physics], Mar. 2021, doi: 10.48550/arXiv.2103.16419. [Online]. Available: http://arxiv.org/abs/2103.16419
[28]
C. M. Pierce, J. K. Bae, A. Galdi, L. Cultrera, I. Bazarov, and J. Maxson, “Beam brightness from Cs–Te near the photoemission threshold,” Appl. Phys. Lett., vol. 118, no. 12, p. 124101, Mar. 2021, doi: 10.1063/5.0044917. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/5.0044917
[29]
Z. Sun, “Study of alternative materials for next generation SRF cavities at Cornell University,” Jefferson Laboratory, Newport News, VA, Mar. 15, 2021.
[30]
R. R. Robles, O. Camacho, A. Fukasawa, N. Majernik, and J. B. Rosenzweig, “Versatile, High Brightness, Cryogenic Photoinjector Electron Source,” arXiv:2103.08789 [physics], Mar. 2021, doi: 10.48550/arXiv.2103.08789. [Online]. Available: http://arxiv.org/abs/2103.08789
[31]
L. Gupta, A. Edelen, N. Neveu, A. Mishra, C. Mayes, and Y.-K. Kim, “Improving Surrogate Model Accuracy for the LCLS-II Injector Frontend Using Convolutional Neural Networks and Transfer Learning,” arXiv:2103.07540 [physics], Mar. 2021, doi: 10.48550/arXiv.2103.07540. [Online]. Available: http://arxiv.org/abs/2103.07540
[32]
N. S. Sitaraman, M. M. Kelley, R. D. Porter, M. U. Liepe, T. A. Arias, J. Carlson, A. R. Pack, M. K. Transtrum, and R. Sundararaman, “Effect of the density of states at the Fermi level on defect free energies and superconductivity: A case study of Nb3Sn,” Phys. Rev. B, vol. 103, no. 11, p. 115106, Mar. 2021, doi: 10.1103/PhysRevB.103.115106. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.103.115106
[33]
A. Scheinker, F. Cropp, S. Paiagua, and D. Filippetto, “Demonstration of adaptive machine learning-based distribution tracking on a compact accelerator: Towards enabling model-based 6D non-invasive beam diagnostics,” arXiv:2102.10510 [physics], Feb. 2021, doi: 10.48550/arXiv.2102.10510. [Online]. Available: http://arxiv.org/abs/2102.10510
[34]
B. Holst, G. Alexandrowicz, N. Avidor, G. Benedek, G. Bracco, W. E. Ernst, D. Farías, A. P. Jardine, K. Lefmann, J. R. Manson, R. Marquardt, S. M. Artés, S. J. Sibener, J. W. Wells, A. Tamtögl, and W. Allison, “Material properties particularly suited to be measured with helium scattering: selected examples from 2D materials, van der Waals heterostructures, glassy materials, catalytic substrates, topological insulators and superconducting radio frequency materials,” Phys. Chem. Chem. Phys., Feb. 2021, doi: 10.1039/D0CP05833E. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2021/cp/d0cp05833e
[35]
J. Carlson, A. Pack, M. K. Transtrum, J. Lee, D. N. Seidman, D. B. Liarte, N. Sitaraman, A. Senanian, J. P. Sethna, T. Arias, S. Posen, and M. M. Kelley, “Analysis of Magnetic Vortex Dissipation in Sn-Segregated Boundaries in Nb3Sn SRF Cavities,” Phys. Rev. B, vol. 103, no. 2, p. 024516, Jan. 2021, doi: 10.1103/PhysRevB.103.024516. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.103.024516
[36]
S. Nagaitsev, Z. Huang, J. Power, J.-L. Vay, P. Piot, L. Spentzouris, J. Rosenzweig, Y. Cai, S. Cousineau, M. Conde, M. Hogan, A. Valishev, M. Minty, T. Zolkin, X. Huang, V. Shiltsev, J. Seeman, J. Byrd, Y. Hao, B. Dunham, B. Carlsten, A. Seryi, and R. Patterson, “Accelerator and Beam Physics Research Goals and Opportunities,” arXiv:2101.04107 [physics], Jan. 2021, doi: 10.48550/arXiv.2101.04107. [Online]. Available: http://arxiv.org/abs/2101.04107
[37]
M. M. Kelley, N. S. Sitaraman, and T. A. Arias, “Ab Initio Theory of the Impact from Grain Boundaries and Substitutional Defects on Superconducting Nb3Sn,” Superconductor Science & Technology, vol. 34, no. 1, p. 015015, Jan. 2021, doi: 10.1088/1361-6668/abc8ce. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6668/abc8ce
[38]
V. Yu, C. Hansel, G. Lawler, J. Mann, M. Mills, and J. Rosenzweig, “Magneto-Optical Trap Cathode for High Brightness Applications,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.286 MB, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB344. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB344.html
[39]
Z. Sun, M. Ge, M. Liepe, T. Oseroff, R. D. Porter, A. Connolly, and M. Thompson, “Surface Roughness Reduction of Nb3Sn Thin Films via Laser Annealing for Superconducting Radio-Frequency Cavities,” in IPAC 2021, Virtual, 2021.
[40]
Y. Shao, G. Lawler, B. Naranjo, and J. Rosenzweig, “Tapered Modular Quadrupole Magnet to Reduce Higher-Order Optical Aberrations,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 3 pages, 0.503 MB, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB328. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB328.html
[41]
P. Saha, O. Chubenko, G. Gevorkyan, A. Kachwala, S. Karkare, C. Knill, E. Montgomery, H. Padmore, and S. Poddar, “Optical and Surface Characterization of Alkali-Antimonide Photocathodes,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.591 MB, 2021, doi: 10.18429/JACOW-IPAC2021-THPAB142. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-THPAB142.html
[42]
R. Roussel and A. Hanuka, “Towards Hysteresis Aware Bayesian Regression and Optimization,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.556 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB289. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB289.html
[43]
A. Romanov, S. Nagaitsev, J. Santucci, G. Stancari, A. Valishev, N. Kuklev, and I. Lobach, “3D Tracking of Single Electron in IOTA,” in IPAC 2021, Campinas, SP, Brazil, 2021, doi: 10.18429/JACoW-IPAC2021-THXB01 [Online]. Available: https://accelconf.web.cern.ch/ipac2021/papers/thxb01.pdf
[44]
P. Manwani, D. Bruhwiler, B. Hidding, M. Litos, N. Majernik, and J. Rosenzweig, “High Brightness Electron Beams from Dragon Tail Injection and the E-312 Experiment at FACET-II,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.274 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB146. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB146.html
[45]
J. Mann, T. Arias, G. Lawler, J. K. Nangoi, and J. Rosenzweig, “Simulations of Nanoblade-Enhanced Laser-Induced Cathode Emissions and Analyses of Yield, MTE, and Brightness,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 1.317 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB147. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB147.html
[46]
N. Majernik, G. Andonian, O. Camacho, A. Fukasawa, G. Lawler, W. Lynn, B. Naranjo, R. Robles, J. Rosenzweig, Y. Sakai, and O. Williams, “Demonstration FELs Using UC-XFEL Technologies at the SAMURAI Laboratory,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.266 MB, 2021, doi: 10.18429/JACOW-IPAC2021-TUPAB092. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-TUPAB092.html
[47]
G. Lawler, J. Mann, J. Rosenzweig, R. Roussel, and V. Yu, “Initial Nanoblade-Enhanced Laser-Induced Cathode Emission Measurements,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 1.601 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB097. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB097.html
[48]
G. Lawler, N. Majernik, and J. Rosenzweig, “Cryogenic Component and Material Testing for Compact Electron Beamlines,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.680 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB098. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB098.html
[49]
G. Lawler, A. Fukasawa, Z. Li, N. Majernik, J. Rosenzweig, A. Suraj, and M. Yadav, “RF Testbed for Cryogenic Photoemission Studies,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.968 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB096. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB096.html
[50]
C. Knill, S. Karkare, and H. Padmore, “Near-Threshold Nonlinear Photoemission From Cu(100),” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.154 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB099. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB099.html
[51]
G. Lawler, Majernik, Nathan, A. Fukasawa, Y. Sakai, and J. B. Rosenzweig, “Cryocooler Technology for Electron Particle Accelerators,” in Cryocoolers 21, Boulder, CO, 2021.
[52]
A. Fukasawa, G. Andonian, O. Camacho, C. Hansel, G. Lawler, Z. Li, W. Lynn, N. Majernik, J. Mann, P. Manwani, B. Naranjo, R. Robles, J. Rosenzweig, Y. Sakai, S. Tantawi, O. Williams, and M. Yadav, “Advanced Photoinjector Development at the UCLA SAMURAI Laboratory,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.298 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB056. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB056.html
[53]
A. Dick, J. Jarvis, and P. Piot, “Numerical Modelling of the Optical Stochastic Cooling Experiment at IOTA,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 0.299 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB271. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB271.html
[54]
A. Dick, J. Jarvis, and P. Piot, “Characterization and Simulation of Optical Delay System for the Proof-of-Principle Experiment of Optical Stochastic Cooling at IOTA,” Proceedings of the 12th International Particle Accelerator Conference, vol. IPAC2021, p. 4 pages, 1.880 MB, 2021, doi: 10.18429/JACOW-IPAC2021-WEPAB270. [Online]. Available: https://jacow.org/ipac2021/doi/JACoW-IPAC2021-WEPAB270.html

2020

[1]
V. Lebedev, J. Jarvis, H. Piekarz, A. Romanov, J. Ruan, and M. Andorf, “Conceptual Design Report: Optical Stochastic Cooling at IOTA,” arXiv:2012.09967 [physics], Dec. 2020, doi: 10.48550/arXiv.2012.09967. [Online]. Available: http://arxiv.org/abs/2012.09967
[2]
A. Romanov, J. Santucci, G. Stancari, A. Valishev, and N. Kuklev, “Experimental 3-dimensional tracking of the dynamics of a single electron in the Fermilab Integrable Optics Test Accelerator (IOTA),” arXiv:2012.04148 [physics], Dec. 2020, doi: 10.48550/arXiv.2012.04148. [Online]. Available: http://arxiv.org/abs/2012.04148
[3]
S. A. Willson, “Deconvoluting Initial Nb-Sn-O Interactions: Spatially Resolved Electronic Characterization of Sn Reconstructions on (3×1)-O Nb(100),” Cornell University, Ithaca, NY, Nov. 10, 2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1487/
[4]
Sun, Zeming, “Electrochemical deposition for generating Nb3Sn films with low surface roughness and stoichiometry,” Cornell University, Ithaca, NY, Nov. 10, 2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1461/
[5]
Ryan Porter, “Growth Studies and Optimization of Nb3Sn Coatings,” Cornell University, Ithaca, NY, Nov. 10, 2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1470/
[6]
Farber, R.G., “Spatially Resolved Adsorption Structures and Diffusion Dynamics of Sn on (3×1)-O Nb(100),” Cornell University, Ithaca, NY, Nov. 10, 2020 [Online]. Available: https://indico.classe.cornell.edu/event/1806/contributions/1484/
[7]
Liepe, M, “Compact Superconducting RF Electron Accelerating Systems,” in Bulletin of the American Physical Society, Oct. 2020 [Online]. Available: https://meetings.aps.org/Meeting/DNP20/Session/LA.2
[8]
A. Galdi, W. J. I. DeBenedetti, J. Balajka, L. Cultrera, I. V. Bazarov, J. M. Maxson, and M. A. Hines, “The effects of oxygen-induced phase segregation on the interfacial electronic structure and quantum efficiency of Cs3Sb photocathodes,” The Journal of Chemical Physics, vol. 153, no. 14, p. 144705, Oct. 2020, doi: 10.1063/5.0024020. [Online]. Available: http://aip.scitation.org/doi/10.1063/5.0024020
[9]
M. B. Andorf, W. F. Bergan, I. V. Bazarov, J. M. Maxson, V. Khachatryan, D. L. Rubin, and S. T. Wang, “Optical stochastic cooling with an arc bypass in the Cornell Electron Storage Ring,” Phys. Rev. Accel. Beams, vol. 23, no. 10, p. 102801, Oct. 2020, doi: 10.1103/PhysRevAccelBeams.23.102801. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.102801
[10]
A. A. McMillan, J. D. Graham, S. A. Willson, R. G. Farber, C. J. Thompson, and S. J. Sibener, “Persistence of the Nb(100) surface oxide reconstruction at elevated temperatures,” Supercond. Sci. Technol., vol. 33, no. 10, p. 105012, Sep. 2020, doi: 10.1088/1361-6668/abaec0. [Online]. Available: https://doi.org/10.1088/1361-6668/abaec0
[11]
M. B. Andorf, V. A. Lebedev, and P. Piot, “Single-pass Cr:ZnSe amplifier for broadband infrared undulator radiation,” Optics Express, vol. 28, no. 18, p. 26601, Aug. 2020, doi: 10.1364/OE.396431. [Online]. Available: https://www.osapublishing.org/abstract.cfm?URI=oe-28-18-26601
[12]
S. Karkare, G. Adhikari, W. A. Schroeder, J. K. Nangoi, T. Arias, J. Maxson, and H. Padmore, “Ultracold electrons via Near-Threshold Photoemission from Single-Crystal Cu(100),” Phys. Rev. Lett., vol. 125, no. 5, p. 054801, Jul. 2020, doi: 10.1103/PhysRevLett.125.054801. [Online]. Available: https://arXiv.org/abs/2002.11579
[13]
C. M. Pierce, M. B. Andorf, E. Lu, C. Gulliford, I. V. Bazarov, J. M. Maxson, M. Gordon, Y.-K. Kim, N. P. Norvell, B. M. Dunham, and T. O. Raubenheimer, “Low intrinsic emittance in modern photoinjector brightness,” Phys. Rev. Accel. Beams, vol. 23, no. 7, p. 070101, Jul. 2020, doi: 10.1103/PhysRevAccelBeams.23.070101. [Online]. Available: http://arxiv.org/abs/2004.08034
[14]
C. J. R. Duncan, D. A. Muller, and J. M. Maxson, “Lossless Monochromation for Electron Microscopy with Pulsed Photoemission Sources and Radio-Frequency Cavities,” Physical Review Applied, vol. 14, no. 1, Jul. 2020, doi: 10.1103/PhysRevApplied.14.014060. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevApplied.14.014060
[15]
E. Padgett, M. E. Holtz, P. Cueva, Y.-T. Shao, E. Langenberg, D. G. Schlom, and D. A. Muller, “The exit-wave power-cepstrum transform for scanning nanobeam electron diffraction: robust strain mapping at subnanometer resolution and subpicometer precision,” Ultramicroscopy, vol. 214, p. 112994, Jul. 2020, doi: 10.1016/j.ultramic.2020.112994. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0304399119303377
[16]
J. N. Nelson, C. T. Parzyck, B. D. Faeth, J. K. Kawasaki, D. G. Schlom, and K. M. Shen, “Mott gap collapse in lightly hole-doped Sr2−xKxIrO4,” Nature Communications, vol. 11, no. 1, May 2020, doi: 10.1038/s41467-020-16425-z. [Online]. Available: http://www.nature.com/articles/s41467-020-16425-z
[17]
A. R. Pack, J. Carlson, S. Wadsworth, and M. K. Transtrum, “Vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory in two and three dimensions: Role of surface defects and material inhomogeneities,” Physical Review B, vol. 101, no. 14, Apr. 2020, doi: 10.1103/PhysRevB.101.144504. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.101.144504
[18]
J. B. Rosenzweig, “Ultra-compact X-ray FEL Based on Advanced Cryogenic RF Techniques,” in Proceedings of the APS Virtual April 2020 Meeting, Virtual, Apr. 2020 [Online]. Available: https://aps-april.onlineeventpro.freeman.com/speakers/rosen~physics.ucla.edu/James-Rosenzweig
[19]
J. Lee, Z. Mao, K. He, Z. H. Sung, T. Spina, S.-I. Baik, D. L. Hall, M. Liepe, D. N. Seidman, and S. Posen, “Grain-boundary structure and segregation in Nb3Sn coatings on Nb for high-performance superconducting radiofrequency cavity applications,” Acta Materialia, vol. 188, pp. 155–165, Apr. 2020, doi: 10.1016/j.actamat.2020.01.055. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S135964542030080X
[20]
C. Hansel, W. An, W. Mori, and J. B. Rosenzweig, “Nonlinear equilibria and emittance growth in plasma wakefield accelerators with ion motion,” arXiv:2003.12062 [physics], Mar. 2020 [Online]. Available: http://arxiv.org/abs/2003.12062
[21]
J. B. Rosenzweig, N. Majernik, R. R. Robles, G. Andonian, O. Camacho, A. Fukasawa, A. Kogar, G. Lawler, J. Miao, P. Musumeci, B. Naranjo, Y. Sakai, R. Candler, B. Pound, C. Pellegrini, C. Emma, A. Halavanau, J. Hastings, Z. Li, M. Nasr, S. Tantawi, P. Anisimov, B. Carlsten, F. Krawczyk, E. Simakov, L. Faillace, M. Ferrario, B. Spataro, S. Karkare, J. Maxson, Y. Ma, J. Wurtele, A. Murokh, A. Zholents, A. Cianchi, and D. Cocco, “An Ultra-Compact X-Ray Free-Electron Laser,” arXiv:2003.06083 [cond-mat, physics:hep-ex, physics:physics], Mar. 2020 [Online]. Available: http://arxiv.org/abs/2003.06083
[22]
P. Denham, F. Cropp, and P. Musumeci, “Analysis of Skew Quadrupole Compensation in RF-Photoinjectors,” arXiv:2003.00049 [physics], Feb. 2020 [Online]. Available: http://arxiv.org/abs/2003.00049
[23]
N. Stilin, A. Holic, M. Liepe, R. Porter, and J. Sears, “Stable CW Operation of Nb3Sn SRF Cavity at 10 MV/m using Conduction Cooling,” arXiv:2002.11755 [physics], Feb. 2020 [Online]. Available: http://arxiv.org/abs/2002.11755
[24]
A. R. Pack, J. Carlson, S. Wadsworth, and M. K. Transtrum, “Role of surface defects and material inhomogeneities for vortex nucleation in superconductors within time-dependent Ginzburg-Landau theory in 2 and 3 dimensions,” Phys. Rev. B, vol. In press., Feb. 2020 [Online]. Available: http://arxiv.org/abs/1911.02132
[25]
C. T. Parzyck, B. D. Faeth, G. N. Tam, G. R. Stewart, and K. M. Shen, “Enhanced surface superconductivity in Ba(Fe 0.95 Co 0.05 ) 2 As 2,” Applied Physics Letters, vol. 116, no. 6, p. 062601, Feb. 2020, doi: 10.1063/1.5133647. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.5133647
[26]
L. Cultrera, A. Galdi, J. K. Bae, F. Ikponmwen, J. Maxson, and I. Bazarov, “Long lifetime polarized electron beam production from negative electron affinity GaAs activated with Sb-Cs-O: Trade-offs between efficiency, spin polarization, and lifetime,” Physical Review Accelerators and Beams, vol. 23, no. 2, Feb. 2020, doi: 10.1103/PhysRevAccelBeams.23.023401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.23.023401
[27]
R. D. Veit, R. G. Farber, N. S. Sitaraman, T. A. A. Arias, and S. J. Sibener, “Suppression of Nano-Hydride Growth on Nb(100) Due to Nitrogen Doping,” Journal of Chemical Physics, vol. 152, no. 21, p. 214703, 2020, doi: 10.1063/5.0007042. [Online]. Available: http://aip.scitation.org/doi/10.1063/5.0007042

2019

[1]
N. S. Sitaraman, J. Carlson, A. R. Pack, R. D. Porter, M. U. Liepe, M. K. Transtrum, and T. A. Arias, “Ab Initio Study of Antisite Defects in Nb3Sn: Phase Diagram and Impact on Superconductivity,” arXiv:1912.07576 [cond-mat, physics:physics], Dec. 2019 [Online]. Available: http://arxiv.org/abs/1912.07576
[2]
R. D. Veit, “Low-Temperature Scanning Tunneling Microscopy and Scanning Tunneling Microscopy Study of Hydrogen and Nitrogen Doped Nb(100) Crystals,” Ph.D. thesis, University of Chicago, 2019.
[3]
A. M. Minor, P. Denes, and D. A. Muller, “Cryogenic electron microscopy for quantum science,” MRS Bull., vol. 44, no. 12, pp. 961–966, Dec. 2019, doi: 10.1557/mrs.2019.288. [Online]. Available: https://doi.org/10.1557/mrs.2019.288
[4]
J. Mann, G. Lawler, and J. Rosenzweig, “1D Quantum Simulations of Electron Rescattering with Metallic Nanoblades,” Instruments, vol. 3, no. 4, p. 59, Dec. 2019, doi: 10.3390/instruments3040059. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/59
[5]
N. Majernik and J. Rosenzweig, “Design of Comb Fabricated Halbach Undulators,” Instruments, vol. 3, no. 4, p. 58, Dec. 2019, doi: 10.3390/instruments3040058. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/58
[6]
G. Lawler, K. Sanwalka, Y. Zhuang, V. Yu, T. Paschen, R. Robles, O. Williams, Y. Sakai, B. Naranjo, and J. Rosenzweig, “Electron Diagnostics for Extreme High Brightness Nano-Blade Field Emission Cathodes,” Instruments, vol. 3, no. 4, p. 57, Dec. 2019, doi: 10.3390/instruments3040057. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/57
[7]
J. Rosenzweig, “Towards an ultra-compact x-ray free-electron laser (Conference Presentation),” in Advances in Laboratory-based X-Ray Sources, Optics, and Applications VII, Oct. 2019, vol. 11110, p. 1111006, doi: 10.1117/12.2531143 [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11110/1111006/Towards-an-ultra-compact-x-ray-free-electron-laser-Conference/10.1117/12.2531143.short
[8]
A. Pack and M. Transtrum, “Numerical Calculations of the Superconducting Superheating Field within Eilenberger Theory,” in Bull. of the Am. Phys. Soc., Prescott, Arizona, Oct. 2019 [Online]. Available: http://meetings.aps.org/Meeting/4CS19/Session/B05.2
[9]
Y.-K. Kim, “Program at the center for bright beams to recruit and train the next generation of scientists in accelerator and related fields,” AIP Conference Proceedings, vol. 2160, no. 1, p. 040008, Oct. 2019, doi: 10.1063/1.5127688. [Online]. Available: https://aip.scitation.org/doi/abs/10.1063/1.5127688
[10]
R. D. Veit, N. A. Kautz, R. G. Farber, and S. J. Sibener, “Oxygen dissolution and surface oxide reconstructions on Nb(100),” Surf. Sci., vol. 688, pp. 63–68, Oct. 2019, doi: 10.1016/j.susc.2019.06.004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0039602819303589
[11]
R. Robles and J. Rosenzweig, “Compression of Ultra-High Brightness Beams for a Compact X-ray Free-Electron Laser,” Instruments, vol. 3, no. 4, p. 53, Oct. 2019, doi: 10.3390/instruments3040053. [Online]. Available: https://www.mdpi.com/2410-390X/3/4/53
[12]
N. Majernik and J. B. Rosenzweig, “Halbach undulators using right triangular magnets,” Phys. Rev. Accel. Beams, vol. 22, no. 9, p. 092401, Sep. 2019, doi: 10.1103/PhysRevAccelBeams.22.092401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.092401
[13]
A. Romanov, D. R. Broemmelsiek, K. Carlson, D. J. Crawford, N. Eddy, D. R. Edstrom, J. Jarvis, V. Lebedev, S. Nagaitsev, J. Ruan, J. K. Santucci, V. Shiltsev, G. Stancari, A. Valishev, A. Warner, Y.-K. Kim, N. Kuklev, I. Lobach, S. Chattopadhyay, and S. Szustkowki, “RECENT RESULTS AND OPPORTUNITIES AT THE IOTA FACILITY,” in Proceedings of the 9th International Beam Instrumentation Conf., Malmo, Sweden, Sep. 2019, vol. FERMILAB-CONF-19-675-AD [Online]. Available: https://www.osti.gov/biblio/1614724
[14]
Z. Sun, M. Liepe, J. Maniscalco, T. Oseroff, R. Porter, D. Zhang, and X. Deng, “Fast Sn-ion transport on Nb surface for generating NbxSn thin films and XPS depth profiling,” in Proc. NAPAC’19, Lansing, MI, Sep. 2019 [Online]. Available: https://napac2019.vrws.de/papers/weplm60.pdf
[15]
R. D. Porter, H. Hu, M. Liepe, J. Tao, N. Stilin, and Z. Sun, “Progress in Nb3Sn SRF Cavities at Cornell University,” in Proc. NAPAC’19, Lansing, MI, Sep. 2019 [Online]. Available: https://napac2019.vrws.de/papers/moybb3.pdf
[16]
W. H. Li, M. B. Andorf, I. V. Bazarov, L. Cultrera, C. J. R. Duncan, A. Galdi, J. M. Maxson, and C. A. Pennington, “Ultrafast Nonlinear Photoemission from Alkali Antimonide Photocathodes,” in Proc. NAPAC’19, Lansing, MI, Sep. 2019 [Online]. Available: https://napac2019.vrws.de/papers/moplh14.pdf
[17]
G. S. Gevorkyan, S. Karkare, I. V. Bazarov, L. Cultrera, A. Galdi, W. H. Li, and J. M. Maxson, “Design of a 200 kV DC Cryocooled Photoemission Gun for Photocathode Investigations,” in Proc. NAPAC’19, Sep. 2019 [Online]. Available: https://napac2019.vrws.de/papers/moplm16.pdf
[18]
A. J. Dick, P. Piot, and M. B. Andorf, “Progress Toward a Laser Amplifier for Optical Stochastic Cooling,” in Proc. NAPAC’19, Lansing, MI, Sep. 2019 [Online]. Available: https://napac2019.vrws.de/papers/tuplm26.pdf
[19]
F.-H. Ji, J. Giner Navarro, P. Musumeci, D. Durham, A. Minor, and D. Filippetto, “Knife-edge based measurement of the 4D transverse phase space of electron beams with picometer-scale emittance,” Phys. Rev. Accel. Beams, vol. 22, p. 082801, Aug. 2019, doi: 10.1103/PhysRevAccelBeams.22.082801. [Online]. Available: https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.22.082801
[20]
P. Cueva, E. Padget, and D. A. Muller, “Sub-nm Resolution, Sub-pm Precision Structure Mapping Robust to Thickness and Tilt Variations by Cepstral Analysis of Scanning Nanodiffraction 4D-STEM,” Microsc. Microanal., vol. 25, no. S2, p. 1934, Aug. 2019, doi: 10.1017/S1431927619010407. [Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/subnm-resolution-subpm-precision-structure-mapping-robust-to-thickness-and-tilt-variations-by-cepstral-analysis-of-scanning-nanodiffraction-4dstem/CCB5F9C8DA602648803DDCD4BED06778
[21]
T. E. Oseroff, M. Liepe, B. Moeckly, M. Sowa, and Z. Sun, “RF Characterization of Novel Superconducting Materials and Multilayers,” in Proc. SRF’19, Dresden, Germany, Jul. 2019, doi: 10.18429/JACoW-SRF2019-THP044 [Online]. Available: https://srf2019.vrws.de/papers/thp044.pdf
[22]
T. E. Oseroff and M. Liepe, “Improvements  to  the  Cornell Sample  Host  System,” in Proc. SRF’19, Dresden, Germany, Jul. 2019, doi: 10.18429/JACoW-SRF2019-THP045.
[23]
S. N. Lobo, M. Liepe, and T. E. Oseroff, “Magnetic Field Mapping System for Cornell Sample Host Cavity,” in Proceedings of SRF’19, Dresden, Germany, Jul. 2019, doi: 10.18429/JACoW-SRF2019-THP046.
[24]
C. Duncan, M. B. Andorf, V. Khachatryan, C. Gulliford, J. Maxson, D. Rubin, and I. Bazarov, “A Generic Software Platform For Rapid Prototyping of Online Cotnrol Algorithms,” Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia, Jul. 2019, doi: 10.18429/JACoW-IPAC2019-THPRB100. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/thprb100.pdf
[25]
A. Galdi, C. M. Pierce, L. Cultrera, G. Adhikari, W. A. Schroeder, H. Paik, D. G. Schlom, J. K. Nangoi, T. A. Arias, E. Lochocki, C. Parzyck, K. M. Shen, J. M. Maxson, and I. V. Bazarov, “Low energy photoemission from (100) Ba1−xLaxSnO3 thin films for photocathode applications,” Eur. Phys. J. Spec. Top., vol. 228, no. 3, pp. 713–718, Jul. 2019, doi: 10.1140/epjst/e2019-800175-x. [Online]. Available: https://doi.org/10.1140/epjst/e2019-800175-x
[26]
J. Maniscalco, “Nitrogen doping, nitrogen infusion, and niobium-3 tin: recent challenges and advances in fundamental SRF accelerator physics,” Joint Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC-ICMC), Hartford, CT, Jul. 2019.
[27]
Z. Sun, M. Liepe, T. Oseroff, R. Porter, T. A. Arias, N. Sitamaran, K. Dobson, X. Deng, A. Connolly, J. Scholtz, and M. Thompson, “Electroplating of Sn film on Nb substrate for generating Nb3Sn thin films and post laser annealing,” in Proc. SRF’19, Dresden, Germany, Jun. 2019, doi: 10.18429/JACoW-SRF2019-MOP014.
[28]
N. Sitaraman, T. A. Arias, R. G. Farber, M. Liepe, J. Maniscalco, S. J. Sibener, and R. D. Veit, “Ab Initio Calculations on Impurity Doped Niobium and Niobium Surfaces,” in Proc. SRF’19, Dresden, Germany, Jun. 2019, doi: 10.18429/JACoW-SRF2019-TUP045.
[29]
J. Maniscalco, M. Ge, P. N. Koufalis, M. Liepe, T. A. Arias, D. B. Liarte, J. P. Sethna, and N. Sitaraman, “The Field-Dependent Surface Resistance of Doped Niobium: New Experimental and Theoretical Results,” in Proc. SRF’19, Jun. 2019, doi: doi:10.18429/JACoW-SRF2019-TUFUA1 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/srf2019/papers/tufua1.pdf
[30]
J. T. Maniscalco, T. Gruber, A. T. Holic, and M. Liepe, “Progress Towards Commissioning the Cornell DC Field Dependence Cavity,” in Proc. of SRF’19, Dresden, Germany, Jun. 2019, doi: doi:10.18429/JACoW-SRF2019-TUP051 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/srf2019/papers/tup051.pdf
[31]
O. Chubenko, S. S. Baturin, and S. V. Baryshev, “Theoretical evaluation of electronic density-of-states and transport effects on field emission from n-type ultrananocrystalline diamond films,” Journal of Applied Physics, vol. 125, no. 20, p. 205303, May 2019, doi: 10.1063/1.5085679. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5085679
[32]
S. Keckert, T. Buck, D. Hall, J. Knobloch, P. Kolb, O. Kugeler, R. Laxdal, M. Liepe, S. Posen, T. Prokscha, Z. Salman, A. Suter, and T. Junginger, “Critical Fields of Nb3Sn Prepared for Superconducting Cavities,” Supercond. Sci. Technol., vol. 32, no. 7, p. 075004, May 2019, doi: 10.1088/1361-6668/ab119e. [Online]. Available: https://doi.org/10.1088/1361-6668/ab119e
[33]
F. H. Ji, D. Durham, A. Minor, P. Musumeci, J. Navarro, and D. Filippetto, “Ultrafast Relativistic Electron Nanoprobes,” Nat. Commun., vol. 2, no. 1, p. 54, May 2019, doi: 10.1038/s42005-019-0154-4. [Online]. Available: https://www.nature.com/articles/s42005-019-0154-4
[34]
M. Liepe, “Superconducting RF for the Future: Is Nb3Sn Ready for Next-generation Accelerators?,” in Proc. IPAC2019, Melbourne, Australia, May 2019 [Online]. Available: https://accelconf.web.cern.ch/ipac2019/talks/tuxplm1_talk.pdf
[35]
L. Gupta, S. Baturin, S. Nagaitsev, and Y.-K. Kim, “Study of Integrable and Quasi-Integrable Sextupole Lattice,” Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-MOPGW107. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/mopgw107.pdf
[36]
W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, and D. L. Rubin, “Applications of Dimension-Reduction to Various Accelerator Physics Problems,” in Proc. IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-THPRB099 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/thprb099.pdf
[37]
S. R. Xie, G. R. Stewart, J. J. Hamlin, P. J. Hirschfeld, and R. G. Hennig, “Functional Form of the Superconducting Critical Temperature from Machine Learning,” arXiv:1905.06780 [cond-mat], May 2019 [Online]. Available: http://arxiv.org/abs/1905.06780
[38]
W. F. Bergan, I. V. Bazarov, C. J. R. Duncan, D. B. Liarte, D. L. Rubin, and J. P. Sethna, “Online storage ring optimization using dimension-reduction and genetic algorithms,” Phys. Rev. Accel. Beams, vol. 22, no. 5, p. 054601, May 2019, doi: 10.1103/PhysRevAccelBeams.22.054601. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.054601
[39]
D. H. Koh and S. S. Baturin, “Analytic model of 3D beam dynamics in a wakefield device,” NIM A, vol. 925, pp. 128–132, May 2019, doi: 10.1016/j.nima.2019.02.016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900219301913
[40]
S. Karkare, J. Feng, J. Maxson, and H. A. Padmore, “Development of a 3-D energy-momentum analyzer for meV-scale energy electrons,” Rev. of Sci. Instr., vol. 90, no. 5, p. 053902, May 2019, doi: 10.1063/1.5091683. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5091683
[41]
J. T. Maniscalco, M. Liepe, T. A. Arias, D. B. Liarte, J. P. Sethna, and N. Sitaraman, “Theoretical Analysis of Quasiparticle Overheating, Positive Q-Slope, and Vortex Losses in SRF Cavities,” in Proc. IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-WEPRB089 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/weprb089.pdf
[42]
N. Kuklev, Y.-K. Kim, S. Nagaitsev, A. Romanov, and A. Valishev, “Experimental Demonstration of the Henon-Heiles Quasi-Integrable System of IOTA,” in Proc. IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-MOPGW113 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/mopgw113.pdf
[43]
N. Kuklev, Y.-K. Kim, J. Jarvis, A. L. Romanov, J. K. Santucci, and G. Stancari, “Synchrotron Radiation Beam Diagnostics at IOTA-Commissioning Performance and Upgrade Efforts,” in Proc. of IPAC2019, Melbourne, Australia, May 2019, doi: 10.18429/JACoW-IPAC2019-WEPGW103 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2019/papers/wepgw103.pdf
[44]
J. K. Nangoi, “Ab initio theory and calculations of many-body effects in photoemission from semiconductor surfaces: Cs3Sb as a case study,” Boston, MA, Mar. 04, 2019 [Online]. Available: https://meetings.aps.org/Meeting/MAR19/Session/P33.7
[45]
C. B. Clement, M. Bierbaum, and J. Sethna, “Image registration and super resolution from first principles,” arXiv:1809.05583 [physics], Feb. 2019 [Online]. Available: https://arxiv.org/pdf/1809.05583.pdf
[46]
J. B. Rosenzweig, A. Cahill, V. Dolgashev, C. Emma, A. Fukasawa, R. Li, C. Limborg, J. Maxson, P. Musumeci, A. Nause, R. Pakter, R. Pompili, R. Roussel, B. Spataro, and S. Tantawi, “Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources,” Phys. Rev. Accel. Beams, vol. 22, no. 2, p. 023403, Feb. 2019, doi: 10.1103/PhysRevAccelBeams.22.023403. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.22.023403
[47]
J. Maniscalco, “Studies of the Field-Dependent Surface Resistance of Nitrogen-Doped Niobium for Superconducting Accelerators,” Ph.D. thesis, Cornell University, 2019 [Online]. Available: https://www.classe.cornell.edu/rsrc/Home/Research/SRF/SrfDissertations/James_thesis_final.pdf
[48]
M. Hu, M. Liepe, and R. D. Porter, “Reducing Surface Roughness of Nb3Sn Through Chemical Polishing Treatments,” in Proc. SRF’19, Dresden, Germany, 2019, doi: 10.18429/JACoW-SRF2019-MOP013 [Online]. Available: https://srf2019.vrws.de/papers/mop013.pdf
[49]
M. Gordon, Y.-K. Kim, and J. M. Maxson, “The Effects of Stochastic Space Charge in High Brightness Photoelectron Beamlines for Ultrafast Electron Diffraction,” in Proc. IPAC2019, Melbourne, Australia, 2019, vol. IPAC2019, doi: 10.18429/jacow-ipac2019-wepts069 [Online]. Available: http://jacow.org/ipac2019/doi/JACoW-IPAC2019-WEPTS069.html
[50]
R. G. Farber, R. D. Veit, N. S. Sitaraman, T. A. Arias, and S. J. Sibener, “Nano-Scale Characterization of the Growth and Suppression Behavior of Niobium Hydrides for Next Generation Superconducting RF Accelerators and Light Sources,” in Program of the AVS Prairie Chapter Symposium, Champaign, IL, 2019, p. p.27 [Online]. Available: https://avs.mrl.illinois.edu/files/2019/09/AVSPCSE2019-Program-final.pdf
[51]
S. Baturin, T. Nikhar, and S. Baryshev, “Field electron emission induced glow discharge in nanodiamond vacuum diode,” J. Phys. D: Appl. Phys., 2019, doi: 10.1088/1361-6463/ab2183. [Online]. Available: http://iopscience.iop.org/10.1088/1361-6463/ab2183

2018

[1]
J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H. Padmore, and J. Maxson, “Brightness of femtosecond nonequilibrium photoemission in metallic photocathodes at wavelengths near the photoemission threshold,” Jour. Appl. Phys., vol. 124, no. 24, p. 244903, Dec. 2018, doi: 10.1063/1.5053082. [Online]. Available: https://aip.scitation.org/doi/10.1063/1.5053082
[2]
S. S. Baturin, G. Andonian, and J. B. Rosenzweig, “Analytical treatment of the wakefields driven by transversely shaped beams in a planar slow-wave structure,” Phys. Rev. Accel. Beams, vol. 21, no. 12, p. 121302, Dec. 2018, doi: 10.1103/PhysRevAccelBeams.21.121302. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.121302
[3]
A. Bernstein and R. Rand, “Delay-Coupled Mathieu Equations in Synchrotron Dynamics Revisited: Delay Terms in the Slow Flow,” Journal of Applied Nonlinear Dynamics, vol. 7, pp. 349–360, Dec. 2018, doi: 10.5890/JAND.2018.12.003. [Online]. Available: https://doi.org/10.5890/JAND.2018.12.003
[4]
D. B. Liarte, D. Hall, P. N. Koufalis, A. Miyazaki, A. Senanian, M. Liepe, and J. P. Sethna, “Vortex dynamics and losses due to pinning: Dissipation from trapped magnetic flux in resonant superconducting radio-frequency cavities,” Phys. Rev. Applied, vol. 10, p. 054057, Nov. 2018, doi: 10.1103/PhysRevApplied.10.054057. [Online]. Available: http://arxiv.org/abs/1808.01293
[5]
J. B. Rosenzweig, A. Cahill, B. Carlsten, G. Castorina, M. Croia, C. Emma, A. Fukusawa, B. Spataro, D. Alesini, V. Dolgashev, M. Ferrario, G. Lawler, R. Li, C. Limborg, J. Maxson, P. Musumeci, R. Pompili, S. Tantawi, and O. Williams, “Ultra-high brightness electron beams from very-high field cryogenic radiofrequency photocathode sources,” NIM A, vol. 909, pp. 224–228, Nov. 2018, doi: 10.1016/j.nima.2018.01.061. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900218300780
[6]
P. Musumeci, J. Giner Navarro, J. B. Rosenzweig, L. Cultrera, I. Bazarov, J. Maxson, S. Karkare, and H. Padmore, “Advances in bright electron sources,” NIM A, vol. 907, p. 209, Nov. 2018, doi: 10.1016/j.nima.2018.03.019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900218303541
[7]
A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, S. G. Tantawi, and S. Weathersby, “High gradient experiments with X-band cryogenic copper accelerating cavities,” Phys. Rev. Accel. Beams, vol. 21, no. 10, p. 102002, Oct. 2018, doi: 10.1103/PhysRevAccelBeams.21.102002. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102002
[8]
D. Marx, J. Giner Navarro, D. Cesar, J. Maxson, B. Marchetti, R. Assmann, and P. Musumeci, “Single-shot reconstruction of core 4D phase space of high-brightness electron beams using metal grids,” Phys. Rev. Accel. Beams, vol. 21, no. 10, p. 102802, Oct. 2018, doi: 10.1103/PhysRevAccelBeams.21.102802. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.102802
[9]
S. Karkare, “Less than 10 meV MTE from Cu,” Santa Fe, NM, Oct. 2018 [Online]. Available: https://indico.cern.ch/event/759878/contributions/3151738/
[10]
G. Gevorkyan, S. Karkare, S. Emamian, I. V. Bazarov, and H. A. Padmore, “Effects of physical and chemical surface roughness on the brightness of electron beams from photocathodes,” Phys. Rev. Accel. Beams, vol. 21, no. 9, p. 093401, Sep. 2018, doi: 10.1103/PhysRevAccelBeams.21.093401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.093401
[11]
B. H. Savitzky, I. El Baggari, C. B. Clement, E. Waite, B. H. Goodge, D. J. Baek, J. P. Sheckelton, C. Pasco, H. Nair, N. J. Schreiber, J. Hoffman, A. S. Admasu, J. Kim, S.-W. Cheong, A. Bhattacharya, D. G. Schlom, T. M. McQueen, R. Hovden, and L. F. Kourkoutis, “Image registration of low signal-to-noise cryo-STEM data,” Ultramicroscopy, vol. 191, pp. 56–65, Aug. 2018, doi: 10.1016/j.ultramic.2018.04.008. [Online]. Available: https://doi.org/10.1016/j.ultramic.2018.04.008
[12]
R. Porter, T. Arias, P. Cueva, D. Hall, M. Liepe, J. Maniscalco, D. Muller, and N. Sitaraman, “Next Generation Nb3Sn SRF Cavities for Linear Accelerators,” Proceedings of the 29th Linear Accelerator Conference, Beijing, China, pp. 462–465, Aug. 2018, doi: 10.18429/JACoW-LINAC2018-TUPO055. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/linac2018/doi/JACoW-LINAC2018-TUPO055.html
[13]
J. T. Maniscalco, P. N. Koufalis, and M. Liepe, “Fundamental Studies of Impurity Doping in 1.3 GHz And Higher Frequency SRF Cavities,” in Proc. of LINAC2018, Beijing, China, Aug. 2018, doi: doi: 10.18429/JACoW-LINAC2018-TUPO054 [Online]. Available: http://linac2018.vrws.de/papers/tupo054.pdf
[14]
P. Cueva, E. Padget, and D. A. Muller, “A Natural Basis for Unsupervised Machine Learning on Scanning Diffraction Data,” Microsc. Microanal., vol. 24, no. S1, p. 490, Aug. 2018, doi: 10.1017/S1431927618002945. [Online]. Available: https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/natural-basis-for-unsupervised-machine-learning-on-scanning-diffraction-data/2B90D32767DC3A0C7714826758A2FC05
[15]
A. D. Cahill, J. B. Rosenzweig, V. A. Dolgashev, Z. Li, S. G. Tantawi, and S. Weathersby, “rf losses in a high gradient cryogenic copper cavity,” Phys. Rev. Accel. Beams, vol. 21, no. 6, p. 061301, Jun. 2018, doi: 10.1103/PhysRevAccelBeams.21.061301. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.061301
[16]
L. Gupta, S. Baturin, Y.-K. Kim, and S. Nagaitsev, “Design of a One-Dimensional Sextupole Using Semi-Analytic Methods,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, Jun. 2018, doi: 10.18429/JACoW-IPAC2018-THPAF070. [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2018/doi/JACoW-IPAC2018-THPAF070.html
[17]
S. S. Baturin and A. Zholents, “Stability condition for the drive bunch in a collinear wakefield accelerator,” Phys. Rev. Accel. Beams, vol. 21, no. 3, p. 031301, Mar. 2018, doi: 10.1103/PhysRevAccelBeams.21.031301. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.21.031301
[18]
J. Ding, D. Hall, and M. Liepe, “Simulations of RF Field-induced Thermal Feedback in Niobium and Nb3Sn Cavities,” in Proc. SRF’17, Lanzhou, China, Jan. 2018, doi: 10.18429/JACoW-SRF2017-THPB079 [Online]. Available: https://doi.org/10.18429/JACoW-SRF2017-THPB079
[19]
A. Zholents, S. Baturin, D. Doran, W. Jansma, M. Kasa, R. Kustom, H. Perez, J. Power, N. Strelnikov, K. Suthar, E. Trakhtenberg, I. Vasserman, G. Waldschmidt, and J. Xu, “A Conceptual Design of a Compact Wakefield Accelerator for a High Repetition Rate Multi User X-ray Free-Electron Laser Facility,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupmf010. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupmf010
[20]
R. Porter, M. Liepe, J. Maniscalco, and R. Strauss, “Update on Sample Host Cavity Design Work for Measuring Flux Entry and Quench Field,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb044. [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB044.html
[21]
R. Porter, F. Furuta, D. Hall, M. Liepe, and J. Maniscalco, “Effects of Chemical Treatments on the Surface Roughess and Surface Magnetic Field Ehancement of Nb3Sn Films for Superconducting Radio-Frequency Cavities,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb043 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB043.html
[22]
R. Porter, T. A. Arias, P. Cueva, J. Ding, D. Hall, M. Liepe, D. A. Muller, and N. Sitaraman, “Update on Nb3Sn Progress at Cornell University,” in Proc. IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf050 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf050
[23]
C. Pierce, S. Baturin, I. Bazarov, M. Gordon, C. Gulliford, Y.-K. Kim, and J. Maxson, “Understanding and Compensating Emittance Diluting Effects in Highly Optimized Ultrafast Electron Diffraction Beamlines,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpaf024. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpaf024
[24]
J. Paul, I. V. Bazarov, A. Galdi, R. Hennig, S. Karkare, and H. Padmore, “Computational Screening for Low Emittance Photocathodes,” in Proc. IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpml053 [Online]. Available: http://accelconf.web.cern.ch/AccelConf/ipac2018/papers/thpml053.pdf
[25]
T. Oseroff, D. Hall, M. Liepe, and J. Maniscalco, “High-frequency SRF Cavities,” in Proc. of SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-tupb009 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-TUPB009.html
[26]
T. Oseroff, M. Ge, M. Liepe, J. Maniscalco, S. McNeal, R. Porter, and M. Sowa, “Performance of Samples with Novel SRF Materials and Growth Techniques,” in Proc. IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf047 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf047
[27]
J. K. Nangoi, T. A. Arias, S. Karkare, H. Padmore, and A. Schroeder, “The Role of Electron-Phonon Scattering in Transverse Momentum Conservation in PbTe(111) Photocathodes,” in Proc. IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/JACoW-IPAC2018-TUPMF065 [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2018-TUPMF065
[28]
J. Maniscalco and M. Liepe, “Updates on the DC Field Dependence Cavity,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf044. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf044
[29]
J. Maniscalco and M. Liepe, “A Computational Method for More Accurate Measurements of the Surface Resistance in SRF Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf042. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-wepmf042
[30]
J. Maniscalco, P. Koufalis, and M. Liepe, “Modeling of the Frequency and Field Dependence of the Surface Resistance of Impurity-Doped Niobium,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-wepmf046. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2018-WEPMF046
[31]
J. Maniscalco, M. Liepe, and R. Porter, “Design Updates on Cavity to Measure Suppression of Microwave Surface Resistance by DC Magnetic Fields,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb005 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB005.html
[32]
D. Liarte, T. Arias, D. Hall, M. Liepe, A. Pack, J. Sethna, N. Sitamaran, and M. Transtrum, “SRF Theory Developments from the Center for Bright Beams,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb040. [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB040.html
[33]
W. Li, I. Bazarov, C. Gulliford, and J. Maxson, “Novel Photocathode Geometry Optimization: Field Enhancing Photoemission Tips,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, p. TUPML029, 2018, doi: 10.18429/jacow-ipac2018-tupml029. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupml029
[34]
S. Karkare, I. Bazarov, S. Emamian, A. Galdi, G. Gevorkyan, H. Padmore, and A. Schmid, “Physical and Chemical Roughness of Alkali-Animonide Cathodes,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpmf080. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpmf080
[35]
D. Hall, P. Cueva, D. Liarte, M. Liepe, D. Muller, R. Porter, and J. Sethna, “Cavity Quench Studies in Nb3Sn Using Temperature Mapping and Surface Analysis of Cavity Cut-outs,” Proceedings of the 18th Int. Conf. on RF Superconductivity, SRF2017, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb041. [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB041.html
[36]
D. Hall, D. Liarte, M. Liepe, R. Porter, and J. Sethna, “Field-dependence of the Sensitivity to Trapped Flux in Nb3Sn,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-thpb042 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-THPB042.html
[37]
D. Hall, T. A. Arias, P. Cueva, D. Liarte, M. Liepe, D. Muller, R. Porter, J. Sethna, and M. Sitaraman, “High Performance Nb3Sn Cavities,” in Proc. SRF’17, Lanzhou, China, 2018, doi: 10.18429/jacow-srf2017-wexa01 [Online]. Available: http://jacow.org/srf2017/doi/JACoW-SRF2017-WEXA01.html
[38]
L. Gupta, S. Baturin, M. Ehrlichman, Y.-K. Kim, J. Maxson, R. Meller, D. Rubin, D. Sagan, and J. Shanks, “Beam-Based Sextupolar Nonlinearity Mapping in CESR,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpak137. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpak137
[39]
J. Giner Navarro, R. Assmann, D. Cesar, B. Marchetti, D. Marx, and P. Musumeci, “Electron Microscopy Inspired Setup for Single-Shot 4-D Trace Space Reconstruction of Bright Electron Beams,” in Proc. IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpml106 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpml106
[40]
A. Galdi, G. Adhikari, I. Bazarov, L. Cultrera, W. Li, E. Lochocki, J. Maxson, H. Paik, C. Parzyck, C. Pierce, D. Schlom, A. Schroeder, and K. Shen, “Barium Tin Oxide Ordered Photocathodes: First Measurements and Future Perspectives,” in Proc. 9th Int. Particle Accel. Conf., IPAC2018, Vancouver, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupml027 [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupml027
[41]
L. Cultrera, J. Bae, A. C. Bartnik, I. V. Bazarov, R. Doane, A. Galdi, C. M. Gulliford, W. H. Li, J. M. Maxson, S. A. McBride, T. P. Moore, C. M. Pierce, C. Xu, and C. University, “Photocathodes R&D for High Brightness and Highly Polarized Electron Beams at Cornell University,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/JACoW-IPAC2018-TUPML028. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2018-TUPML028
[42]
N. Bell and L. Phillips, “Generation of Flat Ultra-Low Emittance Beams,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-thpak072. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-thpak072
[43]
J. K. Bae, I. Bazarov, L. Cultrera, S. Karkare, J. Maxson, P. Musumeci, H. Padmore, and X. Shen, “Multi-photon Photoemission and Ultrafast Electron Heating in Cu Photocathodes at Threshold,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2018, Vancouver, BC, Canada, 2018, doi: 10.18429/jacow-ipac2018-tupml026. [Online]. Available: https://doi.org/10.18429/jacow-ipac2018-tupml026

2017

[1]
Z. Ding, S. Karkare, J. Feng, D. Filippetto, M. Johnson, S. Virostek, F. Sannibale, J. Nasiatka, M. Gaowei, J. Sihsheimer, E. Muller, J. Smedley, and H. Padmore, “Temperature-dependent quantum efficiency degradation of K-Cs-Sb bialkali antimonide photocathodes grown by a triple-element codeposition method,” Phys. Rev. Accel. Beams, vol. 20, no. 11, p. 113401, Nov. 2017, doi: 10.1103/PhysRevAccelBeams.20.113401. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.113401
[2]
D. A. Dimitrov, G. I. Bell, J. Smedley, I. Ben-Zvi, J. Feng, S. Karkare, and H. A. Padmore, “Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes,” Jour. Appl. Phys., vol. 122, no. 16, p. 165303, Oct. 2017, doi: 10.1063/1.4996568. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.4996568
[3]
S. S. Baturin, A. V. Zinovev, and S. V. Baryshev, “Current Saturation in Nonmetallic Field Emitters,” arXiv:1710.03692 [cond-mat, physics:physics], Oct. 2017, doi: http://arxiv.org/abs/1710.03692. [Online]. Available: http://arxiv.org/abs/1710.03692
[4]
O. Chubenko, S. S. Baturin, K. K. Kovi, A. V. Sumant, and S. V. Baryshev, “Locally Resolved Electron Emission Area and Unified View of Field Emission from Ultrananocrystalline Diamond Films,” ACS Appl Mater Interfaces, vol. 9, no. 38, pp. 33229–33237, Sep. 2017, doi: 10.1021/acsami.7b07062. [Online]. Available: https://doi.org/10.1021/acsami.7b07062
[5]
A. Raju, S. Choudhury, D. L. Rubin, A. Wilkinson, and J. P. Sethna, “Finding stability domains and escape rates in kicked Hamiltonians,” arXiv:1707.09336 [cond-mat, physics:physics], Jul. 2017 [Online]. Available: http://arxiv.org/abs/1707.09336
[6]
O. Chubenko, S. Baturin, A. Sumant, A. Zinovev, K. K. Kovi, and S. Baryshev, “Field emission microscopy of ultra-nano-crystalline diamond films,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jul. 2017, doi: 10.1109/IVNC.2017.8051543. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051543
[7]
O. Chubenko, A. Afanasev, S. S. Baturin, and S. V. Baryshev, “Locally resolved field emission area and its effect on resulting j-E characteristics: Case study for planar thin film ultrananocrystalline diamond field emitters,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jul. 2017, doi: 10.1109/IVNC.2017.8051647. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051647
[8]
S. S. Baturin and A. Zholents, “Upper limit for the accelerating gradient in the collinear wakefield accelerator as a function of the transformer ratio,” Phys. Rev. Accel. Beams, vol. 20, no. 6, p. 061302, Jun. 2017, doi: 10.1103/PhysRevAccelBeams.20.061302. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.061302
[9]
S. Baturin, A. Zinovev, and S. Baryshev, “Vacuum Effect on Field Emission I-V curves,” Proceedings of the 30th International Vacuum Nanoelectronics Conference (IVNC), Regensburg, Germany, Jun. 2017, doi: 10.1109/IVNC.2017.8051638. [Online]. Available: https://doi.org/10.1109/IVNC.2017.8051638
[10]
P. Gupta, L. Cultrera, and I. Bazarov, “Monte Carlo simulations of electron photoemission from cesium antimonide,” Journal of Applied Physics, vol. 121, no. 21, p. 215702, Jun. 2017, doi: 10.1063/1.4984263. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.4984263. [Accessed: Jan. 16, 2018]
[11]
Y. Sakai, I. Gadjev, P. Hoang, N. Majernik, A. Nause, A. Fukasawa, O. Williams, M. Fedurin, B. Malone, C. Swinson, K. Kusche, M. Polyanskiy, M. Babzien, M. Montemagno, Z. Zhong, P. Siddons, I. Pogorelsky, V. Yakimenko, T. Kumita, Y. Kamiya, and J. B. Rosenzweig, “Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime,” Phys. Rev. Accel. Beams, vol. 20, no. 6, p. 060701, Jun. 2017, doi: 10.1103/PhysRevAccelBeams.20.060701. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevAccelBeams.20.060701
[12]
R. Porter, M. Liepe, J. Maniscalco, and V. Veshcherevich, “Sample Host Cavity Design for Measuring Flux Entry and Quench,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA126. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA126
[13]
J. Maniscalco, F. Furuta, D. Hall, P. Koufalis, and M. Liepe, “Analysis of Mean Free Path and Field Dependent Surface Resistance,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-WEPVA145. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-WEPVA145
[14]
J. Maniscalco, V. Arrieta, D. Hall, M. Liepe, S. McNeal, R. Porter, and B. Williams, “Cornell Sample Host Cavity: Recent Results,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA123. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA123
[15]
D. Hall, D. Liarte, M. Liepe, and J. Sethna, “Impact of Trapped Magnetic Flux and Thermal Gradients on the Performance of Nb3Sn Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA118. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA118
[16]
D. Hall, T. Arias, P. Cueva, M. Liepe, J. Maniscalco, D. Muller, R. Porter, and N. Sitaraman, “Surface Analysis of Features Seen on Nb3Sn Sample Coupons Grown by Vapour Diffusion,” in Proc. of IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA119 [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA119
[17]
D. Hall, P. Cueva, D. Liarte, M. Liepe, J. Maniscalco, D. Muller, R. Porter, and J. Sethna, “Quench Studies in Single-Cell Nb3Sn Cavities Coated Using Vapour Diffusion,” in Proc. IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA116 [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA116
[18]
A. Cahill, A. Fukasawa, C. Limborg, W. Qin, and J. Rosenzweig, “Optimization of Beam Dynamics for an S-Band Ultra-High Gradient Photoinjector,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-TUPAB129. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-TUPAB129
[19]
A. Cahill, V. Dolgashev, J. Rosenzweig, S. Tantawi, and S. Weathersby, “Ultra High Gradient Breakdown Rates in X-Band Cryogenic Normal Conducting Rf Accelerating Cavities,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, May 2017, doi: 10.18429/JACoW-IPAC2017-THPIK125. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-THPIK125
[20]
M. Ashton, J. Paul, S. B. Sinnott, and R. G. Hennig, “Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials,” Phys. Rev. Lett., vol. 118, no. 10, p. 106101, Mar. 2017, doi: 10.1103/PhysRevLett.118.106101. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.118.106101
[21]
S. S. Baturin and S. V. Baryshev, “Electron emission projection imager,” Review of Scientific Instruments, vol. 88, no. 3, p. 033701, Mar. 2017, doi: 10.1063/1.4977472. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/1.4977472
[22]
J. T. Maniscalco, D. Gonnella, and M. Liepe, “The importance of the electron mean free path for superconducting radio-frequency cavities,” Jour. Appl. Phys., vol. 121, no. 4, p. 043910, Jan. 2017, doi: 10.1063/1.4974909. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/1.4974909
[23]
R. D. Porter, F. Furuta, D. L. Hall, M. Liepe, J. T. Maniscalco, and C. University, “Effectiveness of Chemical Treatments for Reducing the Surface Roughness of Nb3Sn,” Proceedings of the 9th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark, 2017, doi: 10.18429/JACoW-IPAC2017-MOPVA124. [Online]. Available: https://doi.org/10.18429/JACoW-IPAC2017-MOPVA124
[24]
J. T. Paul, A. K. Singh, Z. Dong, H. Zhuang, B. C. Revard, B. Rijal, M. Ashton, A. Linscheid, M. Blonsky, D. Gluhovic, J Guo, and R. G. Hennig, “Computational methods for 2D materials: discovery, property characterization, and application design,” J. Phys.: Condens. Matter, vol. 29, no. 47, p. 473001, 2017, doi: 10.1088/1361-648X/aa9305. [Online]. Available: http://stacks.iop.org/0953-8984/29/i=47/a=473001
[25]
D. B. Liarte, S. Posen, M. K. Transtrum, G. Catelani, M. Liepe, and J. P. Sethna, “Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates,” Supercond. Sci. Technol., vol. 30, no. 3, p. 033002, 2017, doi: 10.1088/1361-6668/30/3/033002. [Online]. Available: http://stacks.iop.org/0953-2048/30/i=3/a=033002

2016


[1]
D. B. Liarte, M. K. Transtrum, and J. P. Sethna, “Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors,” Phys. Rev. B, vol. 94, no. 14, p. 144504, Oct. 2016, doi: 10.1103/PhysRevB.94.144504. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevB.94.144504

Pre-award Publications

[1]
A. Bernstein and R. Rand, “Delay-Coupled Mathieu Equations in Synchrotron Dynamics Revisited: Delay Terms in the Slow Flow,” Journal of Applied Nonlinear Dynamics, vol. 7, pp. 349–360, Dec. 2018, doi: 10.5890/JAND.2018.12.003. [Online]. Available: https://doi.org/10.5890/JAND.2018.12.003